Action of silicic acid derived from sodium silicate precursor toward improving performances of porous gelatin membrane
Zetian Zhang
National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, China
Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, China
Search for more papers by this authorJun Liu
College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu, China
Search for more papers by this authorWenwei Gao
National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, China
Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, China
Search for more papers by this authorLiying Sun
National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, China
Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, China
Search for more papers by this authorCorresponding Author
Zhengjun Li
National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, China
Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, China
Correspondence to: Z. Li (E-mail: [email protected])Search for more papers by this authorZetian Zhang
National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, China
Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, China
Search for more papers by this authorJun Liu
College of Chemistry and Environmental Protection Engineering, Southwest Minzu University, Chengdu, China
Search for more papers by this authorWenwei Gao
National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, China
Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, China
Search for more papers by this authorLiying Sun
National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, China
Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, China
Search for more papers by this authorCorresponding Author
Zhengjun Li
National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, China
Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu, China
Correspondence to: Z. Li (E-mail: [email protected])Search for more papers by this authorABSTRACT
To gain an insight into understanding how the silica network generated from hydrolysis and condensation of silicic acid, derived from sodium silicate, enhancing hydrothermal stability and mechanical properties of the leather, and particularly which active groups playing a main role for interaction of silica with collagen protein molecules, herein, effects of incorporated amino or carboxyl groups on the properties of silicic acid modified gelatin (GE) membrane were intensively studied. We found when lots of amino groups were introduced by adding a modified melamine, the thermal denaturation temperature, uniformity of pore diameter distribution and mechanical strength of GE membrane distinctly increased, while incorporating plenty of carboxyl groups by adding low polymerization degree acrylic acid polymer, no obvious change of performances of GE film was discovered. In addition, utilization of γ-glycidoxypropyltrimethoxysilane had a positive effect on the porosity and flexibility of GE membrane. Importantly, our results indicated that hydrogen bonding probably played the most important role toward improving performances of porous GE film when treated with silicic acid. These findings are greatly beneficial for developing a chrome-free tanning technology based on silicon containing materials, and are also suggestive for fabricating porous silica-GE hybrid materials using sodium silicate as a precursor. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020, 137, 48912.
Supporting Information
Filename | Description |
---|---|
app48912-sup-0001-Appendixs1.pdfPDF document, 929.7 KB | Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Kite, M.; Thomson, R. Conservation of Leather and Related Materials. Routledge Publishing: London, 2006; Vol. 368.
10.4324/9780080454665 Google Scholar
- 2Li, S.; Golub, E.; Katz, E. J. Mol. Biol. 1975, 98, 835.
- 3Albu, M.; Deselnicu, V.; Ioannidis, I.; Dana, D.; Ciprian, C. Korean Chem. Eng. J. 2015, 32, 354.
- 4Covington, A. D. Tanning Chemistry. The Science of Leather; RSC Publishing: Cambridge, England, 2009; p. 349.
- 5Logvinenko, V.; Kosheleva, O.; Popova, E. J. Therm. Anal. Calorim. 2001, 66, 567.
- 6Cao, S.; Liu, B.; Cheng, B.; Lu, F.; Wang, Y.; Li, Y. J. Hazard. Mater. 2017, 321, 203.
- 7Mavlyanov, S.; Islambekov, S.; Ismailov, A.; Dalimov, D.; Abdulladzhanova, N. Chem. Nat. Compd. 2001, 37, 1.
- 8Sun, X. P.; Yong, J.; Lai, S. Q.; Pan, J. Z.; Du, W. N.; Shi, L. J. J. Clean Prod. 2018, 175, 199.
- 9Shi, J. B.; Wang, C. H.; Ngai, T.; Lin, W. Langmuir. 2018, 34, 7379.
- 10Li, Y. P.; Wang, B. C.; Li, Z. J.; Li, L. X. J. Appl. Polym. Sci. 2017, 134, 44831. https://doi.org/10.1002/app.44831.
- 11Zhang, Y.; Ingham, B.; Leveneur, J.; Cheong, S.; Yao, Y.; Clarke, D. J.; Holmes, G.; Kennedy, J.; Prabakar, S. RSC Adv. 2017, 7, 11665.
- 12Zhang, Z. T.; Liu, J.; Wang, J. C.; Li, Z. J. JALCA. 2019, 114, 300.
- 13Zhang, S.; Huang, Y.; Yang, X.; Huang, Y.; Yang, X.; Mei, F.; Ma, Q.; Chen, G.; Ryu, S.; Deng, X. J. Biomed. Mater. Res. A. 2010, 90, 671.
- 14Akkasit, J.; Saroat, R.; Manat, C.; Soottawat, B.; Kazufumi, O.; Munehiko, T. LWT-Food Sci. Technol. 2010, 43, 161.
- 15Li, G. Y.; Fukunaga, S.; Takenouchi, K.; Nakamura, F. Int. J. Cosmet. Sci. 2005, 27, 101.
- 16Bajpai, S.; Bajpai, M.; Dengre, R. J. Appl. Polym. Sci. 2010, 89, 2277.
- 17Han, X. N.; Du, W. N.; Li, Y. P.; Li, Z. J.; Li, L. X. J. Appl. Polym. Sci. 2016, 133, 43059. https://doi.org/10.1002/app.43059.
- 18Saarai, A.; Kasparkova, V.; Sedlacek, T.; Sahaab, P. J. Mech. Behav. Biomed. 2013, 18, 152.
- 19Mahony, O.; Yue, S.; Turdean, I. C.; Hanna, J. V.; Smith, M. E.; Lee, P. D.; Jones, J. R. J. Sol-Gel Sci. Techn. 2014, 69, 288.
- 20Zhang, Z. T.; Han, X. N.; Du, W. N.; Li, Z. J.; Li, L. X. J. Sol-Gel Sci. Techn. 2019, 89, 370.
- 21Du, W. N.; Zhang, Z. T.; Fan, W. H.; Gao, W. W.; Su, H.; Li, Z. J. Mater. Des. 2018, 158, 28.
- 22Shang, X.; Zhu, Y.; Li, Z. Appl. Surf. Sci. 2017, 394, 169.
- 23Nashy, E.; Osman, O.; Mahmoud, A. A.; Medhat, I. Spectrochim. Acta A. 2012, 88, 171.
- 24Yun, L.; Zhao, J.; Kang, X. L.; Du, Y.; Yuan, X. B.; Hou, X. J. Sol-Gel Sci. Techn. 2017, 83, 197.
- 25Xu, Y.; Chen, B. J. Soil. Sediment. 2015, 15, 60.
- 26Qigeqi, D.; Alideertu, D.; Morigen. Molecules. 2015, 20, 7292.
- 27Rasti, M.; Hesaraki, S.; Nezafati, N. J. Appl. Polym. Sci. 2019, 136, 47604. https://doi.org/10.1002/APP.47604.
- 28Chen, Q. Z.; Thouas, G. A. Acta Biomater. 2011, 7, 3616.
- 29Galley, M.; Pravica, M.; Liu, Z. High Pressure Res. 2013, 33, 40.
- 30Singh, P.; Benjakul, S.; Maqsood, S.; Kishimura, H. Food Chem. 2011, 124, 97.
- 31Sneh, G.; Amit, K.; Narayan, C. Mater. Sci. Eng. C:Mater. 2013, 33, 1228.
- 32Zhang, J.; Rahman, A.; Li, Y.; Yang, J.; Zhao, B.; Lu, E.; Zhang, P.; Cao, X.; Yu, R.; Wang, B. Opt. Mater. 2013, 36, 471.
- 33Anandhan, S.; Patil, H.; Raj, M. Adv. Sci. Lett. 2012, 4, 119.
- 34Zou, S.; Huang, J.; Best, S.; Bongfiled, W. J. Mater. Sci.: Mater Med. 2005, 16, 1143.
- 35Ahmadi, Z.; Moztarzadeh, F. Silicon-Neth. 2017, 2018, 1393.
- 36Sai, H.; Xing, L.; Xiang, J.; Cui, L.; Jiao, J.; Zhao, C.; Li, Z.; Li, F.; Zhang, T. RSC Adv. 2014, 4, 30453.
- 37Wu, Q.; Gong, L.; Li, Y.; Cao, C.; Tang, L.; Wu, L.; Zhao, L.; Zhang, G.; Li, S.; Gao, J.; Li, Y.; Mai, Y. ACS Nano. 2018, 12, 416.
- 38Coullerez, G.; Leonard, D.; Lundmark, S.; Mathieu, H. Surf. Interface Anal. 2000, 29, 431.
- 39Kato, H.; Yoshimoto, S.; Ueda, A.; Yamamoto, S.; Kanematsu, Y.; Tachikawa, M.; Mori, H.; Yoshinobu, J.; Matsuda, I. Langmuir. 2018, 34, 2189.
- 40Heath, R.; Di, Y.; Clara, S.; Hudson, A.; Manock, H. J. Soc. Leath. Tech. Ch. 2005, 89, 93.
- 41Rahman, N.; Widiyastuti, W.; Sigit, D.; Ajiza, M.; Sujana, W. In Materials Science and Engineering, International Conference on Chemistry and Material Science (IC2MS), 2017, DOI: https://doi.org/10.1088/1757-899X/299/1/012049
- 42Zhang, Y.; Buchanan, J. K.; Holmes, G.; Mansel, B. W.; Prabakar, S. J. Leather Sci. Eng. 2019, 1, 7096. https://doi.org/10.1186/s42825-019-0011-y.
- 43Ren, L.; Tsuru, K.; Hayakawa, S.; Osaka, A. J. Sol-Gel Sci. Techn. 2001, 21, 115.
- 44Apostolov, A.; Fakirov, S.; Vassileva, E.; Patil, R.; Mark, J. J. Appl. Polym. Sci. 2015, 71, 465.
- 45Liu, J.; Luo, L.; Hu, Y. D.; Wang, F.; Zheng, X. J.; Tang, K. Y. J. Leather Sci. Eng. 2019, 1, 1. https://doi.org/10.1186/s42825-019-0010-z.
10.1186/s42825-019-0004-x Google Scholar
- 46Rao, B. N.; Yadav, P.; Malkappa, K.; Jana, T.; Sastry, P. Polymer. 2015, 77, 323.