Structural changes of polyacrylonitrile fibers in the process of wet spinning
Lihao Sun
Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012 Jilin, China
Search for more papers by this authorLei Shang
Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012 Jilin, China
Search for more papers by this authorLinghan Xiao
Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012 Jilin, China
Search for more papers by this authorMengjie Zhang
Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012 Jilin, China
Search for more papers by this authorCorresponding Author
Ming Li
Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012 Jilin, China
Correspondence to: M. Li (E-mail: [email protected]) and Y. Ao (E-mail: [email protected])Search for more papers by this authorCorresponding Author
Yuhui Ao
Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012 Jilin, China
Correspondence to: M. Li (E-mail: [email protected]) and Y. Ao (E-mail: [email protected])Search for more papers by this authorLihao Sun
Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012 Jilin, China
Search for more papers by this authorLei Shang
Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012 Jilin, China
Search for more papers by this authorLinghan Xiao
Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012 Jilin, China
Search for more papers by this authorMengjie Zhang
Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012 Jilin, China
Search for more papers by this authorCorresponding Author
Ming Li
Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012 Jilin, China
Correspondence to: M. Li (E-mail: [email protected]) and Y. Ao (E-mail: [email protected])Search for more papers by this authorCorresponding Author
Yuhui Ao
Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012 Jilin, China
Correspondence to: M. Li (E-mail: [email protected]) and Y. Ao (E-mail: [email protected])Search for more papers by this authorABSTRACT
In this article, the structural changes of polyacrylonitrile (PAN) fibers at the key stages of wet spinning are systemically studied. According to the X-ray diffraction and scanning electron microscopy analysis, the as-spun fibers show a homogeneous three-dimensional fibrillar network structure with random crystallite orientation, low crystallinity, and abundant pores. As the draw ratio increases, the crystallite orientation and crystallinity increase firstly in the skin and then in the core. The uneven force distribution in fiber is responsible for the inhomogeneous change of fibrillar network. According to the X-ray scattering and scanning electron microscopy analysis, the size, shape, and volume fraction of pores are strongly dependent on the compactness degree of fibrillar network. As the fibrillar network inhomogeneously shrinks, the total pore volume decreases, and the volume fraction of small-sized pores increased considerably from 25 to 96%, leaving a handful of large-sized pores in the core. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020, 137, 48905.
CONFLICT OF INTEREST
We declare that there is no conflict of interest.
Supporting Information
Filename | Description |
---|---|
app48905-sup-0001-Appendix S1.pdfPDF document, 530.7 KB | Figure S1 IR spectrum of as-spun fibers (P1) and P1 with DMAC. Figure S2. A typical 1D-WAXD pattern of PAN fibers (P5) fitted by a Gaussian curve. Figure S3. Sketches of radial shrinkage and axial shrinkage. Figure S4. An assumed elliptical model. Figure S5. A typical 1D-SAXS pattern of PAN fibers (P3) decomposed by Frankuche tangent method. Figure S6. The images of the specimens (P1-P6) during wet spinning. Table S1. The multiple structures of PAN fibers and test method |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCE
- 1Chae, H. G.; Newcomb, B. A.; Gulgunje, P. V.; Liu, Y.; Gupta, K. K.; Kamath, M. G.; Lyons, K. M.; Ghoshal, S.; Pramanik, C.; Giannuzzi, L.; Şahin, K.; Chasiotis, I.; Kumar, S. Carbon. 2015, 93, 81.
- 2Chen, J. C.; Harrison, I. R. Carbon. 2002, 40, 25.
- 3Ozcan, S.; Vautard, F.; Naskar, A. K. ACS Symp. 2014, 1173, 215.
- 4Bajaj, P.; Sreekumar, T. V.; Sen, K. J. Appl. Polym. Sci. 2010, 86, 773.
- 5Newcomb, B. A. Compos. A: Appl. Sci. Manuf. 2016, 91, 262.
- 6Liu, J.; Liu, Q.; Ma, S.; Liang, J.; Ma, X.; Fong, H. Polymer. 2013, 54, 4987.
- 7Azari, S.; Karimi, M.; Kish, M. H. Indus. Eng. Chem. Res. 2010, 49, 2442.
- 8Shen, T.; Li, C.; Haley, B.; Desai, S.; Strachan, A. Polymer. 2018, 155, 13.
- 9Jäger, H.; Cherif, C.; Kirsten, M.; Behnisch, T.; Wolz, D. S.; Böhm, R.; Gude, M. Materialwissenschaft Und Werkstofftechnik. 2016, 47, 1044.
- 10Hao, J.; Li, W.; Suo, X.; Wei, H.; Lu, C.; Liu, Y. Polymer. 2018, 157, 139.
- 11Bohn, C. R.; Schaefgen, J. R.; Statton, W. O. J. Polym. Sci. Part A Polym. Chem. 1961, 55, 531.
- 12Gupta, A. K.; Singhal, R. P. J. Polym. Sci. Part B Polym. Phys. Ther. 1983, 21, 2243.
- 13Yu, M.; Wang, C.; Bai, Y.; Bo, Z.; Ji, M.; Yong, X. J. Polym. Sci. Part B Polym. Phys. Ther. 2010, 46, 759.
- 14Bai, Y. J.; Wang, C. G.; Lun, N.; Wang, Y. X.; Yu, M. J.; Zhu, B. Carbon. 2006, 44, 1773.
- 15Bell, J. P.; Dumbleton, J. H. Textile Res. J. 1971, 41, 196.
- 16Wang, Y. X.; Wang, C. G.; Bai, Y. J.; Bo, Z. J. Appl. Polym. Sci. 2010, 104, 1026.
- 17Hao, J.; An, F.; Yu, Y.; Zhou, P.; Liu, Y.; Lu, C. J. Appl. Polym. Sci. 2017, 134, 44390.
- 18Loidl, D.; Paris, O.; Rennhofer, H.; Müller, M.; Peterlik, H. Carbon. 2007, 45, 2801.
- 19Rennhofer, H.; Loidl, D.; Puchegger, S.; Peterlik, H. Carbon. 2010, 48, 964.
- 20Thünemann, A. F.; Ruland, W. Macromolecules. 2000, 33, 2626.
- 21Wang, W.; Murthy, N. S.; Grubb, D. T. J. Polym. Sci. Part B. 2012, 50, 797.
- 22Gong, Y.; Du, R.; Mo, G.; Xing, X.; Lü, C.-X.; Wu, Z. Polymer. 2018, 153, 485.
- 23Serkov, A. T.; Kudryavtsev, G. I.; Serkova, L. A. Fibre Chem. 1974, 6, 56.
10.1007/BF00546503 Google Scholar
- 24Reznik, B.; Gerthsen, D.; Zhang, W.; Hüttinger, K. J. Carbon. 2003, 41, 376.
- 25Pauw, V. D.; Reznik, B.; Kalhöfer, S.; Gerthsen, D.; Hu, Z. J.; Hüttinger, K. J. Carbon. 2003, 41, 71.
- 26Zhou, Y.; Han, X.; Hu, X.; Xu, L.; Cao, W. Polymers. 2016, 29, 1158.
- 27Ge, Y.; Fu, Z.; Deng, Y.; Zhang, M.; Zhang, H. J. Mater. Sci. 2019, 54, 12592.
- 28Hameed, N.; Sharp, J.; Nunna, S.; Creighton, C.; Magniez, K.; Jyotishkumar, P.; Salim, N. V.; Fox, B. Polym. Degrad. Stability. 2016, 128, 39.
- 29Zhou, G.; Liu, Y.; He, L.; Guo, Q.; Ye, H. Carbon. 2011, 49, 2883.
- 30Nimts, F. G.; Geller, A. A.; Geller, B. É.; Yunusov, B. K. Fibre Chem. 1987, 18, 162.
10.1007/BF00553289 Google Scholar
- 31Thünemann, A. F.; Ruland, W. Macromolecules. 2000, 33, 1848.
- 32Erik, F.; Steudle, L. M.; Denis, I.; SpçRl, J. M.; Buchmeiser, M. R. Angew. Chem. Int. Ed. 2014, 53, 5262.
- 33Qin, X.; Lu, Y.; Hao, X.; Zhao, W. Science. 2013, 53, 827.
- 34Nunna, S.; Creighton, C.; Hameed, N.; Naebe, M.; Henderson, L. C.; Setty, M.; Fox, B. L. Polym. Test. 2017, 59, 203.