Assessment of olive pomace wastes as flame retardants
Elyssa El Kassis
LCPM, Faculty of Sciences, Lebanese University, Fanar, Lebanon
C2MA, IMT Mines Alés, 6, Avenue de Clavières 30100 Alès, France
Search for more papers by this authorBelkacem Otazaghine
C2MA, IMT Mines Alés, 6, Avenue de Clavières 30100 Alès, France
Search for more papers by this authorCorresponding Author
Roland El Hage
LCPM, Faculty of Sciences, Lebanese University, Fanar, Lebanon
Correspondence to: R. El Hage (E-mail: [email protected]) and R. Sonnier (E-mail: [email protected])Search for more papers by this authorCorresponding Author
Rodolphe Sonnier
C2MA, IMT Mines Alés, 6, Avenue de Clavières 30100 Alès, France
Correspondence to: R. El Hage (E-mail: [email protected]) and R. Sonnier (E-mail: [email protected])Search for more papers by this authorElyssa El Kassis
LCPM, Faculty of Sciences, Lebanese University, Fanar, Lebanon
C2MA, IMT Mines Alés, 6, Avenue de Clavières 30100 Alès, France
Search for more papers by this authorBelkacem Otazaghine
C2MA, IMT Mines Alés, 6, Avenue de Clavières 30100 Alès, France
Search for more papers by this authorCorresponding Author
Roland El Hage
LCPM, Faculty of Sciences, Lebanese University, Fanar, Lebanon
Correspondence to: R. El Hage (E-mail: [email protected]) and R. Sonnier (E-mail: [email protected])Search for more papers by this authorCorresponding Author
Rodolphe Sonnier
C2MA, IMT Mines Alés, 6, Avenue de Clavières 30100 Alès, France
Correspondence to: R. El Hage (E-mail: [email protected]) and R. Sonnier (E-mail: [email protected])Search for more papers by this authorABSTRACT
Olive pomace (OP) is a lignocellulosic waste from olive oil industry. In order to valorize these wastes as flame retardant (FR) fillers into polymers, OP residues are milled and screened into three different fractions. Two strategies are then investigated. The first one is to modify OP particles by phosphorus molecules using radiation grafting as already done successfully with flax. Nevertheless, pyrolysis combustion flow calorimetry analyses show that the introduction of phosphorus does not promote charring of OP and flame retardancy is not significantly improved whichever the considered fraction. The second strategy is to replace pentaerythritol by OP as char source into well-known FR systems based on ammonium polyphosphate. The incorporation of such system into ethylene-vinyl acetate copolymer leads to satisfying FR performances according to cone calorimeter tests. Moreover, the presence of high amount of extractives into OP such as oleic acid does not appear detrimental. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020, 137, 47715.
Supporting Information
Filename | Description |
---|---|
app47715-sup-0001-Tables.docxWord 2007 document , 19.9 KB |
Table S1 – Main data obtained from PCFC analyses for olive pomace fractions before and after extractives removal Table S2 Main data from PCFC analyses for EVA composites Table S3 Main data from cone calorimeter tests for EVA composites |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Sonnier, R.; Taguet, A.; Ferry, L.; Lopez-Cuesta, J. M. Towards Bio-Based Flame Retardant Polymers; Springer: Cham, Switzerland, 2018.
10.1007/978-3-319-67083-6 Google Scholar
- 2Costes, L.; Laoutid, F.; Brohez, S.; Dubois, P. Mater. Sci. Eng.: R: Rep. 2017, 117, 1.
- 3Illy, N.; Fache, M.; Ménard, R.; Negrell, C.; Caillol, S.; David, G. Polym. Chem. 2015, 6, 6257.
- 4Ménard, R.; Negrell, C.; Ferry, L.; Sonnier, R.; David, G. Polym. Degrad. Stab. 2015, 120, 300.
- 5Negrell, C.; Frénéhard, O.; Sonnier, R.; Dumazert, L.; Briffaud, T.; Flat, J. J. Polym. Degrad. Stab. 2016, 134, 10.
- 6Costes, L.; Laoutid, F.; Dumazert, L.; Lopez-Cuesta, J. M.; Brohez, S.; Delvosalle, C.; Dubois, P. H. Polym. Degrad. Stab. 2015, 119, 217.
- 7Alongi, J.; Carletto, R.; Di Blasio, A.; Carosio, F.; Bosco, F.; Malucelli, G. J. Mater. Chem. A. 2013, 1, 4779.
- 8Gallina, G.; Bravin, E.; Badalucco, C.; Audisio, G.; Armanini, M.; De Chirico, A.; Provasoli, F. Fire Mater. 1998, 22, 15.
- 9Song, P.; Cao, Z.; Fu, S.; Fang, Z.; Wu, Q.; Ye, J. Thermochim. Acta. 2011, 518, 59.
- 10Basak, S.; Ali, S. W. Polym. Degrad. Stab. 2017, 144, 83.
- 11Reti, C.; Casetta, M.; Duquesne, S.; Bourbigot, S.; Delobel, R. Polym. Adv. Technol. 2008, 19, 628.
- 12Kinab, E.; Khoury, G. Renew. Sustain. Energy Rev. 2015, 52, 209.
- 13Dermeche, S.; Nadour, M.; Larroche, C.; Moulti-Mati, F.; Michaud, P. Process Biochem. 2013, 48, 1532.
- 14Akay, F.; Kazan, A.; Soner Celiktas, M.; Yesil-Celiktas, O. Supercrit. Fluids. 2015, 99, 1.
- 15Leouifoudi, I.; Harnafi, H.; Zyad, A. Adv. Pharmacol. Sci. 2015, 1.
- 16Aliakbarian, B.; Paini, M.; Adami, R.; Perego, P.; Reverchon, E. Innov. Food Sci. Emerg. Technol. 2017, 40, 2.
- 17Chanioti, S.; Tzia, C. Innov. Food Sci. Emerg. Technol. 2018, 48, 228.
- 18Pagnanelli, F.; Cruz Viggi, C.; Toro, L. Appl. Surf. Sci. 2010, 256, 5492.
- 19Barbanera, M.; Lascaro, E.; Stanzione, V.; Esposito, A.; Altieri, R.; Bufacchi, M. Renew. Energy. 2016, 88, 185.
- 20Miranda, T.; Arranz, J.; Montero, I.; Roman, S.; Rojas, C.; Nogales, S. Fuel Process. Technol. 2002, 103, 91.
- 21Guizani, C.; Haddad, K.; Jeguirim, M.; Colin, B.; Limousy, L. Energy. 2016, 107, 453.
- 22Djefel, D.; Makhlouf, S.; Khedache, S.; Lefebvre, G.; Royon, L. Internat. J. Hydrogen Energy. 2015, 40, 13764.
- 23Kaya, N.; Atagur, M.; Akyuz, O.; Seki, Y.; Sarikanat, M.; Sutcu, M.; Seydibeyoglu, M. O.; Sever, K. Compos. Part B. 2018, 150, 277.
- 24Lammi, S.; Le Moigne, N.; Djenane, D.; Gontard, N.; Angellier-Coussy, H. Ind. Crop Prod. 2018, 120, 250.
- 25de Moraes Crizel, T.; de Oliveira Rios, A.; Alves, V.; Bandarra, N.; Moldao-Martins, M.; Hickmann Flores, S. Food Hydrocoll. 2018, 74, 139.
- 26Boudria, A.; Hammoui, Y.; Adjeroud, N.; Djerrada, N.; Madani, K. Adv. Powder Technol. 2018, 29, 1230.
- 27Hammoui, Y.; Molina-Boisseau, S.; Duval, A.; Djerrada, N.; Adjeroud, N.; Remini, H.; Dahmoune, F.; Madani, K. Mater. Des. 2015, 87, 742.
- 28Lammi, S.; Barakat, A.; Mayer-Laigle, C.; Djenane, D.; Gontard, N.; Angellier-Coussy, H. Powder Technol. 2018, 326, 44.
- 29Sonnier, R.; Otazaghine, B.; Viretto, A.; Apolinario, G.; Ienny, P. Eur. Polym. J. 2015, 68, 313.
- 30Teixeira, M.; Sonnier, R.; Otazaghine, B.; Ferry, L.; Aubert, M.; Tirri, T.; Wilén, C. E.; Rouif, S. Radiat. Phys. Chem. 2017, 145, 135.
- 31Hajj, R.; El Hage, R.; Sonnier, R.; Otazaghine, B.; Gallard, B.; Rouif, S.; Nakhl, M.; Lopez-Cuesta, J. M. Polym. Degrad. Stab. 2018, 147, 25.
- 32Brosse, N.; El Hage, R.; Chaouch, M.; Pétrissans, M.; Dumarçay, S.; Gérardin, P. Polym. Degrad. Stab. 2010, 95, 1721.
- 33 ASTM D1104-56 Method of Test for Holocellulose in Wood; ASTM International: West Conshohocken, USA, 1978.
- 34Lyon, R. E.; Walters, R. N. Anal. Appl. Pyrol. 2004, 71(1), 27.
- 35Huggett, C. Fire Mater. 1980, 4(2), 61.
- 36Wedyan, M.; Abu Hanieh, B.; Al Harasheh, A.; Rahman Al Tawaha, A. Bulg. J. Agric. Sci. 2017, 23, 866.
- 37Clemente, A.; Sanchez-Vioque, R.; Vioque, J.; Bautista, J.; Millan, F. Food Biotechnol. 1997, 11, 273.
- 38Dorez, G.; Ferry, L.; Sonnier, R.; Taguet, A.; Lopez-Cuesta, J. M. Anal. Appl. Pyrol. 2014, 107, 323.