Polystyrene bioactive nanofibers using orange oil as an ecofriendly solvent
Kelvi W. E. Miranda
Graduate Program in Biomaterials Engineering, Federal University of Lavras (UFLA), Lavras, 37200-000 Minas Gerais, Brazil
Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentation, São Carlos, 13560-970 São Paulo, Brazil
Search for more papers by this authorLuiz H. C. Mattoso
Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentation, São Carlos, 13560-970 São Paulo, Brazil
Search for more papers by this authorJoana D. Bresolin
Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentation, São Carlos, 13560-970 São Paulo, Brazil
Search for more papers by this authorSilviane Z. Hubinger
Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentation, São Carlos, 13560-970 São Paulo, Brazil
Search for more papers by this authorEliton S. Medeiros
Materials and Biosystems Laboratory, Department of Materials Engineering (DEMAT), Federal University of Paraíba (UFPB), João Pessoa, 58051-900 João Pessoa, Brazil
Search for more papers by this authorCorresponding Author
Juliano E. de Oliveira
Department of Engineering (DEG), Federal University of Lavras (UFLA), Lavras, 37200-000 Minas Gerais, Brazil
Correspondence to: J. E. de Oliveira (E-mail: [email protected])Search for more papers by this authorKelvi W. E. Miranda
Graduate Program in Biomaterials Engineering, Federal University of Lavras (UFLA), Lavras, 37200-000 Minas Gerais, Brazil
Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentation, São Carlos, 13560-970 São Paulo, Brazil
Search for more papers by this authorLuiz H. C. Mattoso
Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentation, São Carlos, 13560-970 São Paulo, Brazil
Search for more papers by this authorJoana D. Bresolin
Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentation, São Carlos, 13560-970 São Paulo, Brazil
Search for more papers by this authorSilviane Z. Hubinger
Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentation, São Carlos, 13560-970 São Paulo, Brazil
Search for more papers by this authorEliton S. Medeiros
Materials and Biosystems Laboratory, Department of Materials Engineering (DEMAT), Federal University of Paraíba (UFPB), João Pessoa, 58051-900 João Pessoa, Brazil
Search for more papers by this authorCorresponding Author
Juliano E. de Oliveira
Department of Engineering (DEG), Federal University of Lavras (UFLA), Lavras, 37200-000 Minas Gerais, Brazil
Correspondence to: J. E. de Oliveira (E-mail: [email protected])Search for more papers by this authorABSTRACT
Solution blow spun polystyrene (PS) nanofibers were produced from 20 to 30 wt % PS solutions using toluene (industrial solvent) and orange oil (green solvent). The latter being composed of d-limonene (97.06%) as determined by gas chromatography–mass spectroscopy. The rheological behavior and volatility of the solvents and polymer solutions were correlated with fiber morphology, accessed by scanning electron microscopy. Thermal analysis was used to determine the thermal behavior of fibers. The antimicrobial activity of orange oil was tested for potential applications of the spun mats in active food packaging. Results showed that the nanofibers spun from orange oil solutions had average diameters of 306 ± 74 nm as opposed to 441 ± 110 nm for toluene. Moreover, when compared with fiber spun from toluene solutions, orange oil yielded more flexible fibers with slightly lower contact angles and better antimicrobial properties due to the presence of residual oil confirmed by Fourier-transform infrared spectroscopy. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47337.
REFERENCES
- 1Medeiros, E. S.; Glenn, G. M.; Klamczynski, A. P.; Orts, W. J.; Mattoso, L. H. C. J. Appl. Polym. Sci. 2009, 113, 2322.
- 2Cooper, A.; Bhattarai, N.; Zhang, M. Carbohydr. Polym. 2011, 85, 149.
- 3Poornima, B.; Korrapati, P. S. Carbohydr. Polym. 2016, 157, 1741.
- 4Xue, J.; He, M.; Liu, H.; Niu, Y.; Crawford, A.; Coates, P. D.; Chen, D.; Shi, R.; Zhang, L. Biomaterials. 2014, 35, 9395.
- 5Dai, R.; Lim, L.-T. Food Res. Int. 2015, 77, 467.
- 6Noruzi, M. J. Sci. Food Agric. 2016, 96, 4663.
- 7Alexandrino, A. M.; de Faria, H. G.; de Souza, C. G. M.; Peralta, R. M. Food Sci. Technol. 2007, 27, 364.
- 8Azhdarzadeh, F.; Hojjati, M. Nutr. Food Sci. Res. 2016, 3, 43.
- 9Mira, B.; Blasco, M.; Berna, A.; Subirats, S. J. Supercrit. Fluids. 1999, 14, 95.
- 10Filley, C. M.; Halliday, W.; Kleinschmidt-DeMasters, B. K. J. Neuropathol. Exp. Neurol. 2004, 63(1), 1.
- 11Barry, C. P.; Morose, G. J.; Begin, K.; Atwater, M.; Hansen, C. J. Int. J. Adhes. Adhes. 2017, 78, 174.
- 12Aissou, M.; Chemat-Djenni, Z.; Yara-Varón, E.; Fabiano-Tixier, A.-S.; Chemat, F. C. R. Chim. 2017, 20, 346.
- 13García, M. T.; Gracia, I.; Duque, G.; de Lucas, A.; Rodríguez, J. F. Waste Manag. 2009, 29, 1814.
- 14Bartlett, I. W.; Dalton, A. J. P.; McGuinness, A.; Palmer, H. Ann. Occup. Hyg. 1999, 43, 83.
- 15Shin, C.; Chase, G. G. Polym. Bull. 2005, 55, 209.
- 16Khirandish, M.; Borhani, S.; Mallakpour, S.; Youssefi, M. Indian J. Fibre Text. Res. 2016, 41, 373.
- 17Daristotle, J. L.; Behrens, A. M.; Sandler, A. D.; Kofinas, P. ACS Appl. Mater. Interfaces. 2016, 8, 34951.
- 18Bonan, R. F.; Bonan, P. R. F.; Batista, A. U. D.; Perez, D. E. C.; Castellano, L. R. C.; Oliveira, J. E.; Medeiros, E. S. J. Appl. Polym. Sci. 2017, 134, n/a.
- 19Silva, T. H.; de Oliveira, J. E.; de Medeiros, E. S. Polímeros. 2015, 25, 229.
- 20Huan, S.; Bai, L.; Liu, G.; Cheng, W.; Han, G. RSC Adv. 2015, 5, 50756.
- 21Huan, S.; Liu, G.; Han, G.; Cheng, W.; Fu, Z.; Wu, Q.; Wang, Q. Materials. 2015, 8, 2718.
- 22Chigome, S.; Darko, G.; Torto, N. Analyst. 2011, 136, 2879.
- 23Guo, Z.; Wu, X.; Dong, J.; Su, H.; Cai, R. Anal. Methods. 2014, 6, 5120.
- 24Li, H. M.; Zhang, Q. G.; Guo, N. N.; Zhu, A. M.; Liu, Q. L. Chem. Eng. J. 2015, 264, 329.
- 25Liu, X.; Baldursdottir, S. G.; Aho, J.; Qu, H.; Christensen, L. P.; Rantanen, J.; Yang, M. Pharm. Res. 2017, 34, 738.
- 26 NCCLS, N. C. for C. L. S. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically. Ferraro, M. J. (ed.) Vol. 23. 6th ed., Wayne: Pennsylvania, 2003.
- 27Plascencia-Jatomea, M.; Viniegra, G.; Olayo, R.; Castillo-Ortega, M. M.; Shirai, K. Macromol. Biosci. 2003, 3, 582.
- 28Oliveira, J.; Brichi, G. S.; Marconcini, J. M.; Mattoso, L. H. C.; Glenn, G. M.; de Medeiros, E. S. J. Eng. Fibers Fabr. 2014, 9, 117.
- 29Belalia, F.; Djelali, N.-E. Rev. Roum. Chim. 2014, 59, 135.
- 30Abdala, A. A.; Wu, W.; Olesen, K. R.; Jenkins, R. D.; Tonelli, A. E.; Khan, S. A. J.Rheol. 2004, 48, 979.
- 31Mi, H.-Y.; Jing, X.; Jacques, B. R.; Turng, L.-S.; Peng, X.-F. J. Mater. Res. 2013, 28, 2339.
- 32Owlia, P.; Saderi, H.; Rasooli, I.; Sefidkon, F. Iran. J. Pharm. Res. 2010, 0, 107.
- 33O'Bryan, C. A.; Crandall, P. G.; Chalova, V. I.; Ricke, S. C. J. Food Sci. 2008, 73, M264.
- 34Suhr, K. I.; Nielsen, P. V. J. Appl. Microbiol. 2003, 94, 665.
- 35Torres-Alvarez, C.; González, A. N.; Rodríguez, J.; Castillo, S.; Leos-Rivas, C.; Báez-González, J. G. CyTA-J. Food. 2017, 15, 129.
- 36Jing, L.; Lei, Z.; Li, L.; Xie, R.; Xi, W.; Guan, Y.; Sumner, L. W.; Zhou, Z. J. Agric. Food Chem. 2014, 62, 3011.
- 37Chee, H. Y.; Kim, H.; Lee, M. H. Mycobiology. 2009, 37, 243.
- 38Ünal, M. Ü.; Uçan, F.; Şener, A.; Diçnçer, S. Turk. J. Agric. For. 2012, 36, 576.
- 39Garg, K.; Bowlin, G. L. Biomicrofluidics. 2011, 5, 013403.
- 40Casasola, R.; Thomas, N. L.; Georgiadou, S. J. Polym. Sci. Part B: Polym. Phys. 2016, 54, 1483.
- 41da Parize, D. D. S.; Foschini, M. M.; de Oliveira, J. E.; Klamczynski, A. P.; Glenn, G. M.; Marconcini, J. M.; Mattoso, L. H. C. J. Mater. Sci. 2016, 51, 4627.
- 42Li, J.; Song, G.; Yu, J.; Wang, Y.; Zhu, J.; Hu, Z. Nanomaterials. 2017, 7, 395.
- 43Sheiko, S. S.; Vainilovitch, I. S.; Magonov, S. N. Polym. Bull. 1991, 25, 499.
- 44Rodbari, R. J.; Wendelbo, R.; Jamshidi, L. C. L. A.; Hernández, E. P.; Nascimento, L. J. Chil. Chem. Soc. 2016, 61, 3120.
- 45Nyquist, R. A.; Putzig, C. L.; Leugers, M. A.; McLachlan, R. D.; Thill, B. Appl. Spectrosc. 1992, 46, 981.
- 46Pitzer, K. S.; Scott, D. W. J. Am. Chem. Soc. 1943, 65, 803.
- 47Bhutto, A. A.; Vesely, D.; Gabrys, B. J. Polymer. 2003, 44, 6627.
- 48Krasovskii, A. N.; Novikov, D. V.; Osmolovskaya, N. A.; Borisova, S. V. Polym. Sci. Ser. A. 2012, 54, 451.
- 49Partal Ureña, F.; Moreno, J. R. A.; López González, J. J. Tetrahedron: Asymmetry. 2009, 20, 89.
- 50Schulz, H.; Schrader, B.; Quilitzsch, R.; Steuer, B. Appl. Spectrosc. 2002, 56, 117.
- 51Suresh, K.; Kumar, R. V.; Pugazhenthi, G. J. Sci.: Adv. Mater. Dev. 2016, 1, 351.
- 52Jiao, L.; Sun, J. Procedia Eng. 2014, 71, 622.
- 53Kang, M.; Jung, R.; Kim, H.-S.; Jin, H.-J. Colloids Surf. A Physicochem. Eng. Asp. 2008, 313, 411.
- 54Zheng, J.; He, A.; Li, J.; Xu, J.; Han, C. C. Polymer. 2006, 47, 7095.
- 55Miwa, M.; Nakajima, A.; Fujishima, A.; Hashimoto, K.; Watanabe, T. Langmuir. 2000, 16, 5754.
- 56Chen, W. S.; Hsieh, P. H.; Yang, W. N.; Fan-Jen, P. Z.; Yang, M.-L.; Yeh, J. M.; Wei, Y.; Chin, T. Y.; Chen-Yang, Y. W. J. Mater. Chem. B. 2014, 2, 1205.