Interfacial compatibility of super-tough poly(lactic acid)/polyurethane blends investigated by positron annihilation lifetime spectroscopy
Corresponding Author
Xipo Zhao
Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-weight Materials and Processing, Hubei University of Technology, Wuhan 430068, China
Correspondence to: X. Zhao (E-mail: [email protected] or [email protected])Search for more papers by this authorXiaolei Yu
Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-weight Materials and Processing, Hubei University of Technology, Wuhan 430068, China
Search for more papers by this authorHao Chen
Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-weight Materials and Processing, Hubei University of Technology, Wuhan 430068, China
Search for more papers by this authorWeiyi Zhou
Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-weight Materials and Processing, Hubei University of Technology, Wuhan 430068, China
Search for more papers by this authorPengfei Fang
School of Physics and Technology, Wuhan University, Wuhan 430072, China
Search for more papers by this authorShaoxian Peng
Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-weight Materials and Processing, Hubei University of Technology, Wuhan 430068, China
Search for more papers by this authorCorresponding Author
Xipo Zhao
Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-weight Materials and Processing, Hubei University of Technology, Wuhan 430068, China
Correspondence to: X. Zhao (E-mail: [email protected] or [email protected])Search for more papers by this authorXiaolei Yu
Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-weight Materials and Processing, Hubei University of Technology, Wuhan 430068, China
Search for more papers by this authorHao Chen
Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-weight Materials and Processing, Hubei University of Technology, Wuhan 430068, China
Search for more papers by this authorWeiyi Zhou
Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-weight Materials and Processing, Hubei University of Technology, Wuhan 430068, China
Search for more papers by this authorPengfei Fang
School of Physics and Technology, Wuhan University, Wuhan 430072, China
Search for more papers by this authorShaoxian Peng
Hubei Provincial Key Laboratory of Green Materials for Light Industry, Collaborative Innovation Center of Green Light-weight Materials and Processing, Hubei University of Technology, Wuhan 430068, China
Search for more papers by this authorABSTRACT
Supertough polylactide (PLA)/polyurethane (PU) blends were prepared by reactive blending of PLA with polyester polyol and toluene-2,4-diisocyanate. The free volume and interfacial compatibility between the two polymers were investigated by positron annihilation lifetime spectroscopy. The PU particles dispersed homogeneously in the PLA matrix and self-assembled into a subinclusion microstructure, resulting in fibrils and significant plastic deformation occurs during impact process. More phase interface and free volume cavities formed between PLA and PU boundary because of a good interfacial compatibility between the two polymers, leading to smaller sizes of free volume cavities, and the increasing of the number of these cavities. Therefore, the toughness of PLA was greatly improved by blending PU. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 46596.
REFERENCES
- 1 Castro-Aguirre, E.; Iñiguez-Franco, F.; Samsudin, H.; Fang, X.; Auras, R. Adv. Drug Delivery Rev. 2016, 107, 333.
- 2 Nagarajan, V.; Mohanty, A. K.; Misra, M. ACS Sustain. Chem. Eng. 2016, 4, 2899.
- 3 Liu, H.; Zhang, J. J. Polym. Sci. Part B: Polym. Phys. 2011, 49, 1051.
- 4 Wu, N.; Zhang, H. Mater. Lett. 2017, 192, 17.
- 5 Fang, H.; Jiang, F.; Wu, Q.; Ding, Y.; Wang, Z. ACS Appl. Mater. Interfaces 2014, 6, 13552.
- 6 Liu, H.; Chen, F.; Liu, B.; Estep, G.; Zhang, J. Macromolecules 2010, 43, 6058.
- 7 Lu, X.; Wei, X.; Huang, J.; Yang, L.; Zhang, G.; He, G.; Wang, M.; Qu, J. Ind. Eng. Chem. Res. 2014, 53, 17386.
- 8 Liu, G.-C.; He, Y.-S.; Zeng, J.-B.; Xu, Y.; Wang, Y.-Z. Polym. Chem. 2014, 5, 2530.
- 9 He, Y.-S.; Zeng, J.-B.; Liu, G.-C.; Li, Q.-T.; Wang, Y.-Z. RSC Adv. 2014, 4, 12857.
- 10 Zhao, X.; Ding, Z.; Lin, Q.; Peng, S.; Fang, P. J. Appl. Polym. Sci. 2016, 134, 44383.
- 11 Jean, Y. C. Microchem. J. 1990, 42, 72.
- 12 Li, H.-L.; Ujihira, Y.; Yoshino, T.; Yoshii, K.; Yamashita, T.; Horie, K. Polymer 1998, 39, 4075.
- 13 Victor, J. G.; Torkelson, J. M. Macromolecules 1988, 21, 3490.
- 14 Wei, C. Y.; Chong, S. P. S. Macromolecules 1988, 21, 365.
- 15 Tanabe, Y.; Muller, N.; Fischer, E. W. Polym. J. 1984, 16, 445.
- 16 Jose, R.; Ravikumar, H. B.; Munirathnamma, L. M.; Varghese, L. A.; Unnikrishnan, G. Polym. Plast. Technol. Eng. 2018, 57, 196.
- 17 Ravikumar, H. B.; Ranganathaiah, C.; Kumaraswamy, G. N.; Thomas, S. Polymer 2005, 46, 2372.
- 18 Zheng, Y. P.; Zhang, J. X.; Yu, P. Y.; Shi, W.; Wang, B. J. Macromol. Sci. Rev. Polym. Process 2010, 49, 1016.
- 19 Veedu, A. K. K.; Basavaraju, R. H.; Chikkakuntappa, R. J. Appl. Polym. Sci. 2013, 130, 793.
- 20 Munirathnamma, L. M.; Ravikumar, H. B. J. Appl. Polym. Sci. 2016, 133, DOI: 10.1002/app.43647.
- 21 Raj, J. M.; Ranganathaiah, C. Polym. Degrad. Stab. 2009, 94, 397.
- 22 De Guzman, M.; Liu, P.-Y.; Chen, J.-T.; Tung, K.-L.; Lee, K.-R.; Lai, J.-Y. J. Membr. Sci. 2011, 378, 503.
- 23 Mayer, A. C.; Toney, M. F.; Scully, S. R.; Rivnay, J.; Brabec, C. J.; Scharber, M.; Koppe, M.; Heeney, M.; McCulloch, I.; McGehee, M. D. Adv. Funct. Mater. 2009, 19, 1173.
- 24 Wang, J.; Gong, J.; Gong, Z.; Yan, X.; Wang, B.; Wu, Q.; Li, S. Nucl. Inst. Methods Phys. Res. B 2010, 268, 2355.
- 25 Zhang, K.; Nagarajan, V.; Misra, M.; Mohanty, A. K. ACS Appl. Mater. Interfaces 2014, 6, 12436.
- 26 Liu, G.-C.; He, Y.-S.; Zeng, J.-B.; Li, Q.-T.; Wang, Y.-Z. Biomacromolecules 2014, 15, 4260.
- 27 Song, W.; Liu, H.; Chen, F.; Zhang, J. Polymer 2012, 53, 2476.
- 28 Ho, C.-H.; Wang, C.-H.; Lin, C.-I.; Lee, Y.-D. Polymer 2008, 49, 3902.
- 29 Rath, S. K.; Sharma, S. K.; Sudarshan, K.; Chavan, J. G.; Patro, T. U.; Pujari, P. K. Polymer 2016, 101, 358.
- 30 Ramani, R.; Alam, S. J. Appl. Polym. Sci. 2016, 133, DOI: 10.1002/app.42961.
- 31 Mansilla, M. A.; Marzocca, A. J.; Macchi, C. Polym. Test. 2017, 63, 150.