Layer-by-layer fabrication of nacre inspired epoxy/MMT multilayered composites
Sadia Batool
Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi 46000, Pakistan
Search for more papers by this authorCorresponding Author
Rohama Gill
Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi 46000, Pakistan
Correspondence to: R. Gill (E-mail: [email protected] or [email protected])Search for more papers by this authorMuhammad Arshad
Nanoscience and Technology Department, National Centre for Physics, Quaid-i-Azam University Campus, Islamabad 44000, Pakistan
Search for more papers by this authorHumaira Masood Siddiqi
Department of Chemistry, Quaid-i-Azam University, Islamabad 44000, Pakistan
Search for more papers by this authorShahid Saeed Qureshi
Department of Chemistry, Government Post Graduate College (GPGC), Jhelum 49600, Pakistan
Search for more papers by this authorSadia Batool
Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi 46000, Pakistan
Search for more papers by this authorCorresponding Author
Rohama Gill
Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi 46000, Pakistan
Correspondence to: R. Gill (E-mail: [email protected] or [email protected])Search for more papers by this authorMuhammad Arshad
Nanoscience and Technology Department, National Centre for Physics, Quaid-i-Azam University Campus, Islamabad 44000, Pakistan
Search for more papers by this authorHumaira Masood Siddiqi
Department of Chemistry, Quaid-i-Azam University, Islamabad 44000, Pakistan
Search for more papers by this authorShahid Saeed Qureshi
Department of Chemistry, Government Post Graduate College (GPGC), Jhelum 49600, Pakistan
Search for more papers by this authorABSTRACT
The organic–inorganic hybrid multilayered composites are prepared using a unique combination of poly[(o-cresyl glycidyl ether)-co-formaldehyde] (CNER), amino modified montmorillonite (NH2-MMT), and polyethyleneimine (PEI). This tricomponent composite multilayer PEI(CNER/NH2-MMT/PEI)n deposited via layer-by-layer technique is based upon synergistic combination of covalent and hydrogen bonding. The growth of multilayer was monitored using UV–vis spectroscopy and ellipsometry. When subjected to optical analyses, the prepared multilayered composite films revealed profound optical transmittance ∼83%–87%. The surface morphological analysis by atomic force microscopy and scanning electron microscopy revealed uniform arrangement of organic–inorganic components with relative increase in intensity of elements (C, N, O, Si) as confirmed by X-ray photoelectron spectroscopy studies. The multilayered composites possess 1.99 GPa hardness making them potential candidate for a number of applications where mechanical strength is desired. Moreover, significant resistance against alkaline and organic solvents at minimal deterioration of circa 0.12% has also been observed for the prepared films. The epoxy clay based thin films being robust, scratch resistant, hydrophilic, chemically inert, and mechanically strong are potential candidates for advanced environmental applications. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 46079.
REFERENCES
- 1 Zhang, S.; Zhang, J.; Zhang, Z.; Dang, H.; Liu, W.; Xue, Q. Mater. Lett. 2004, 58, 2266.
- 2 Jackson, A. P.; Vincent, J. F. V.; Turner, R. M. Proc. R. Soc. Lond. 1988, 234, 415.
- 3 Luca, F. D.; Menzel, R.; Blaker, J. J.; Birkbeck, J.; Bismarck, A.; Shaffer, M. S. P. ACS Appl. Mater. Interfaces 2015, 7, 26783.
- 4 Walther, A.; Bjurhager, I.; Malho, J. M.; Pere, J.; Ruokolainen, J.; Berglund, L. A.; Ikkala, O. Nano Lett. 2010, 10, 2742.
- 5 Decher, G. Science 1997, 277, 1232.
- 6 Tang, Z.; Kotov, N.; Magonov, A. S.; Ozturk, B. Nat. Mater. 2003, 2, 413.
- 7 Popa, G.; Boulmedais, F.; Zhao, P.; Hemmerlé, J.; Vidal, L.; Mathieu, E.; Félix, O.; Schaaf, P.; Decher, G.; Voegel, J. C. ACS Nano 2010, 4, 4792.
- 8 Kim, Y. S.; Davis, R.; Cain, A. A.; Grunlan, J. C. Polymer 2011, 52, 2847.
- 9 Yuan, W.; Ji, J.; Fu, J.; Shen, J. J. Biomed. Mater. Res. B 2008, 85, 556.
- 10 Cui, J.; Koeverden, M. P.; Müllner, M.; Kempe, K.; Caruso, F. Adv. Colloid Interface Sci. 2014, 207, 14.
- 11 Gill, R.; Batool, S.; Qureshi, S. S.; Khalid, R. J. Chem. Soc. Pak. 2015, 37, 468.
- 12 Yang, Y. H.; Malek, F. A.; Grunlan, J. C. Ind. Eng. Chem. Res. 2010, 49, 8501.
- 13 Ray, S.; Okamoto, S. M. Prog. Polym. Sci. 2003, 28, 1539.
- 14 Kim, D. W.; Choi, H. S.; Lee, C.; Blumstein, A.; Kang, Y. Electrochim. Acta 2004, 50, 659.
- 15 Wang, K.; Chen, L.; Wu, J.; Toh, M.; He, L. C.; Yee, A. F. Macromolecules 2005, 38, 788.
- 16 Li, Y. C.; Schulz, J.; Grunlan, J. C. ACS Appl. Mater. Interfaces 2009, 1, 2338.
- 17 Srivastava, S.; Kotov, N. A. Acc. Chem. Res. 2008, 41, 1831.
- 18 Wang, S. S.; Shu, Y. Q.; Liang, B. L.; Gao, L.; Gao, C. M.; Yin, P.; Guo, G. L. Chin. J. Polym. Sci. 2014, 32, 675.
- 19 Patro, T. U.; Wagner, H. D. Nanotechnology 2011, 22, 455706.
- 20 Barua, S.; Dutta, N.; Karmakar, S.; Chattopadhyay, P.; Aidew, L.; Buragohain, A. K.; Karak, N. Biomed. Mater. 2014, 9, 025006.
- 21 Saba, N.; Jawaid, M.; Alothman, O. Y.; Paridah, M.; Hassan, T. A. J. Reinf. Plast. Compos. 2016, 35, 447.
- 22 Qureshi, S. S.; Zheng, Z.; Sarwar, M. I.; Félix, O.; Decher, G. ACS Nano 2013, 7, 9336.
- 23 Batool, S.; Mahmood, A.; Gill, R.; Qureshi, S.; Mazhar, S.; Bououdina, M. M. Polym. Bull. 2017, 74, 4827.
- 24 Shanmugharaj, A. M.; Ryu, S. H. Thermochim. Acta 2012, 546, 16.
- 25 Varadwaj, G. B. B.; Rana, S.; Parida, K. M. Dalton Trans. 2013, 42, 5122.
- 26 Bruce, A. N.; Lieber, D.; Hua, I.; Howarter, J. A. J. Colloid Interface Sci. 2014, 419, 73.
- 27 Muthuvel, I.; Krishnakumar, B.; Swaminathan, M. Indian J. Chem. A 2012, 51, 800.
- 28 Wan, C.; Bao, X.; Zhao, F.; Kandasubramanian, B.; Duggan, M. P. J. Appl. Polym. Sci. 2008, 110, 550.
- 29 Priolo, M. A.; Holder, K.; Gamboa, M. D.; Grunlan, J. C. Langmuir 2011, 27, 2106.
- 30 Wang, N.; Fu, W.; Zhang, J.; Li, X.; Fang, Q. Prog. Org. Coat. 2013, 89, 114.
- 31 Zhang, W.; Dehghani-Sanij, A. A.; Blackburn, R. S. Prog. Nat. Sci. 2008, 18, 801.
- 32 Sui, L.; Huang, L.; Podsiadlo, P.; Kotov, N. A. Macromolecules 2010, 43, 9541.
- 33 Wazed, A.; Rajendran, S.; Joshi, S. M. Polym. Polym. Compos. 2010, 18, 237.
- 34 Priolo, M. A.; Gamboa, D.; Holder, K. M.; Grunlan, J. C. Nano Lett. 2010, 10, 4970.
- 35 Xiang, F.; Tzeng, P.; Sawyer, J. S.; Regev, O.; Grunlan, J. C. ACS Appl. Mater. Interfaces 2014, 6, 6040.
- 36 Li, Y. C.; Schulz, J.; Mannen, S.; Delhom, C.; Condon, B.; Chang, S.; Zammarano, M.; Grunlan, J. C. ACS Nano 2010, 4, 3325.
- 37 Tzeng, P.; Maupin, C.; Grunlan, J. C. J. Membr. Sci. 2014, 452, 46.
- 38 Jang, W. S.; Rawson, I.; Grunlan, J. C. Thin Solid Films 2008, 516, 4819.
- 39 Gill, R.; Mazhar, M.; Félix, O.; Decher, G. Angew. Chem. Int. Ed. 2010, 49, 6116.
- 40 Kim, Y. S.; Harris, R.; Davis, R. ACS Macro Lett. 2012, 1, 820.
- 41 Huang, G. B.; Ge, C. H.; He, B. J. Appl. Surf. Sci. 2011, 257, 7123.
- 42 Podsiadlo, P.; Michel, M.; Lee, J.; Verploegen, E.; Wong Shi Kam, N.; Ball, V.; Lee, J.; Qi, Y.; Hart, A. J.; Hammond, P. T.; Kotov, N. A. Nano Lett. 2008, 8, 1762.
- 43 Fernández-Ramos, C.; Sayagués, M. J.; Rojas, T. C.; Alcalá, M. D.; Real, C.; Fernández, A. Diamond Relat. Mater. 2000, 9, 212.
- 44 Yun, H. J.; Hong, H.; Lee, J.; Choi, C. J. Mater. Trans. 2014, 55, 801.
- 45 Meiron, T. S.; Marmur, A.; Saguy, I. S. J. Colloid Interface Sci. 2004, 274, 637.
- 46 Waraich, S. M.; Hering, B.; Burghard, Z.; Bill, J.; Behrens, P.; Menzel, H. J. Colloid Interface Sci. 2012, 367, 74.
- 47 Humood, M.; Chowdhury, S.; Song, Y.; Tzeng, P.; Grunlan, J. C.; Polycarpou, A. A. ACS Appl. Mater. Interfaces 2016, 8, 11128.
- 48 Vertlib, V.; Dietiker, M.; Plötze, M.; Yezek, L.; Spolenak, R.; Puzrin, A. M. J. Mater. Res. 2008, 23, 1026.
- 49 Lombardi, S. A.; Chon, G. D.; Lee, J. J. W.; Lane, H. A.; Paynter, K. T. Biol. Bull. 2013, 225, 175.