Fully bio-based polyesters derived from 2,5-furandicarboxylic acid (2,5-FDCA) and dodecanedioic acid (DDCA): From semicrystalline thermoplastic to amorphous elastomer
Zhen Jia
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201 People's Republic of China
Key Laboratory of Bio-based Polymeric Materials, Ningbo, Zhejiang, People's Republic of China
Search for more papers by this authorJinggang Wang
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201 People's Republic of China
Key Laboratory of Bio-based Polymeric Materials, Ningbo, Zhejiang, People's Republic of China
University of Chinese Academy of Sciences, Beijing, 100049 People's Republic of China
Search for more papers by this authorLiyuan Sun
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201 People's Republic of China
University of Chinese Academy of Sciences, Beijing, 100049 People's Republic of China
Search for more papers by this authorJin Zhu
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201 People's Republic of China
Key Laboratory of Bio-based Polymeric Materials, Ningbo, Zhejiang, People's Republic of China
Search for more papers by this authorCorresponding Author
Xiaoqing Liu
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201 People's Republic of China
Key Laboratory of Bio-based Polymeric Materials, Ningbo, Zhejiang, People's Republic of China
Correspondence to: X. Liu (E-mail: [email protected])Search for more papers by this authorZhen Jia
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201 People's Republic of China
Key Laboratory of Bio-based Polymeric Materials, Ningbo, Zhejiang, People's Republic of China
Search for more papers by this authorJinggang Wang
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201 People's Republic of China
Key Laboratory of Bio-based Polymeric Materials, Ningbo, Zhejiang, People's Republic of China
University of Chinese Academy of Sciences, Beijing, 100049 People's Republic of China
Search for more papers by this authorLiyuan Sun
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201 People's Republic of China
University of Chinese Academy of Sciences, Beijing, 100049 People's Republic of China
Search for more papers by this authorJin Zhu
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201 People's Republic of China
Key Laboratory of Bio-based Polymeric Materials, Ningbo, Zhejiang, People's Republic of China
Search for more papers by this authorCorresponding Author
Xiaoqing Liu
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201 People's Republic of China
Key Laboratory of Bio-based Polymeric Materials, Ningbo, Zhejiang, People's Republic of China
Correspondence to: X. Liu (E-mail: [email protected])Search for more papers by this authorABSTRACT
A serials of fully bio-based poly(ethylene dodecanedioate-2,5-furandicarboxylate) (PEDF) were synthesized from Dodecanedioic acid (DDCA), 2,5-Furandicarboxylic acid (2,5-FDCA), and ethylene glycol through a two-step procedure consisted of transesterification and polycondensation. After their chemical structures were confirmed by Nuclear Magnetic Resonance and Fourier Transform Infrared Spectroscopy, their thermal, mechanical, and biodegradation properties were investigated in detail. Results showed that the chemical composition of PEDFs could be easily controlled by the feeding mole ratio of DDCA to FDCA and they possessed the characteristic of random copolyester with the intrinsic viscosity ranged from 0.82 to 1.2 dL/g. With the varied mole ratio of DDCA to FDCA, PEDFs could be changed from semicrystalline thermoplastic to the completely amorphous elastomer, indicated by the elongation at break ranged from 4 for poly(ethylene 2,5-furandicarboxylate) to 1500% for amorphous PEDF-40. The amorphous PEDF-30 and PEDF-40 showed satisfactory shape recovery after cyclic tensile test, which was the typical behavior for elastomer. Enzymatic degradation test indicated that all the PEDFs were biodegradable and the degradation rate was heavily affected by their chemical compositions. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 46076.
REFERENCES
- 1 Sharma, V.; Kundu, P. P. Prog. Polym. Sci. 2006, 31, 983.
- 2 Iwata, T. Angew. Chem. Int. Ed. 2015, 54, 3210.
- 3 Chen, B.-K.; Shen, C.-H.; Chen, S.-C.; Chen, A. F. Polymer 2010, 51, 4667.
- 4 Ye, H.-M.; Wang, R.-D.; Liu, J.; Xu, J.; Guo, B.-H. Macromolecules 2012, 45, 5667.
- 5 Shah, A. A.; Kato, S.; Shintani, N.; Kamini, N. R.; Nakajima-Kambe, T. Appl. Microbiol. Biot. 2014, 98, 3437.
- 6 Ullmann, F. In Ullmanns's Encyclopedia of Industrial Chemistry; VCH Verlagsgemeinschaft: Berlin, Germany, 1993, p 334.
- 7 Greemer, H. M. J. C. In Handbook of Elastomers; Marcel Dekker: New York, 2000, p 382.
- 8 Adams, R. K.; Hoeschelle, G. K.; Witsiepe, W. K. In Thermoplastic Elastomers; Hanser, Publishers: Munich, Germany, 2004.
- 9 Thiyagarajan, S.; Pukin, A.; van Haveren, J.; Lutz, M.; van Es, D. S. RSC Adv. 2013, 3, 15678.
- 10 Eerhart, A. J. J. E.; Faaij, A. P. C.; Patel, M. K. Energ. Environ. Sci. 2012, 5, 6407.
- 11 Albonetti, S.; Lolli, A.; Morandi, V.; Migliori, A.; Lucarelli, C.; Cavani, F. Appl. Catal. B: Environ. 2015, 163, 520.
- 12 van Putten, R. J.; van der Waal, J. C.; de Jong, E.; Rasrendra, C. B.; Heeres, H. J.; de Vries, J. G. Chem. Rev. 2013, 113, 1499.
- 13 Xiao, Y.; Luo, W. P.; Zhang, X. Y.; Guo, C. C.; Liu, Q.; Jiang, G. F.; Li, Q. H. Catal. Lett. 2010, 134, 155.
- 14 Jiang, M.; Liu, Q.; Zhang, Q.; Ye, C.; Zhou, G. J. Polym. Sci. Part A: Polym. Chem. 2012, 50, 1026.
- 15 Gandini, A.; Silvestre, A. J. D.; Neto, C. P.; Sousa, A. F.; Gomes, M. J. Polym. Sci. Part A: Polym. Chem. 2009, 47, 295.
- 16 Papageorgiou, G. Z.; Papageorgiou, D. G.; Tsanaktsis, V.; Bikiaris, D. N. Polymer 2015, 62, 28.
- 17 Wu, B.; Xu, Y.; Bu, Z.; Wu, L.; Li, B.-G.; Dubois, P. Polymer 2014, 55, 3648.
- 18 Papageorgiou, D. G.; Guigo, N.; Tsanaktsis, V.; Exarhopoulos, S.; Bikiaris, D. N.; Sbirrazzuoli, N.; Papageorgiou, G. Z. Ind. Eng. Chem. Res. 2016, 55, 5315.
- 19 Papageorgiou, G. Z.; Tsanaktsis, V.; Papageorgiou, D. G.; Chrissafis, K.; Exarhopoulos, S.; Bikiaris, D. N. Eur. Polym. J. 2015, 67, 383.
- 20 Mitiakoudis, A.; Gandini, A. Macromolecules 1991 24, 830.
- 21 Boufi, S.; Belgacem, M. N.; Quillerou, J.; Gandini, A. Macromolecules 1993, 26, 6706.
- 22 Deng, J.; Liu, X.; Li, C.; Jiang, Y.; Zhu, J. RSC Adv. 2015, 5, 15930.
- 23 Cheng, Y. T. Bull. Microbiol. 2000, 27, 389.
- 24
Weisserme, K.;
Arpe, H.-J. In Industrial Organic Chemistry; John Wiley & Sons: Hoboken, NJ, 1997.
10.1002/9783527616688 Google Scholar
- 25 Green, K. D.; Turner, M. K.; Woodley, J. M. Enzyme Microb. Tech. 2000, 27, 205.
- 26 Ren, M.; Mo, Z.; Chen, Q.; Song, J.; Wang, S.; Zhang, H.; Zhao, Q. Polymer 2004, 45, 3511.
- 27 Kroha, K. Inform 2004, 15, 568.
- 28 Garner, D. P.; Fasulo, P. D. J. Appl. Polym. Sci. 1988, 36, 495.
- 29 Zheng, W.; McAuley, K. B.; Marchildon, E. K.; Yao, K. Z. Ind. Eng. Chem. Res. 2005, 44, 2675.
- 30 Liu, F.; Zhang, J.; Wang, J.; Na, H.; Zhu, J. RSC Adv. 2015, 5, 94091.
- 31 Gabrielse, W.; Soliman, M.; Dijkstra, K. Macromolecules 2001, 34, 1685.
- 32 Szymczyk, A. Eur. Polym. J. 2009, 45, 2653.
- 33 Pang, C.; Zhang, J.; Zhang, Q.; Wu, G.; Wang, Y.; Ma, J. Polym. Chem. 2015, 6, 797.
- 34 Pang, C.; Zhang, J.; Wu, G.; Wang, Y.; Gao, H.; Ma, J. Polym. Chem. 2014, 5, 2843.
- 35 Schumacher, F. R.; Schmit, S. L.; Jiao, S.; Edlund, C. K.; Wang, H.; Zhang, B.; Hsu, L.; Huang, S.-C.; Fischer, C. P.; Harju, J. F.; Idos, G. E.; Lejbkowicz, F.; Manion, F. J.; McDonnell, K.; McNeil, C. E.; Melas, M.; Rennert, H. S.; Shi, W.; Thomas, D. C.; Van Den Berg, D. J.; Hutter, C. M.; Aragaki, A. K.; Butterbach, K.; Caan, B. J.; Carlson, C. S.; Chanock, S. J.; Curtis, K. R.; Fuchs, C. S.; Gala, M.; Giovannucc, E. L.; Giocannucci, E. L.; Gogarten, S. M.; Hayes, R. B.; Henderson, B.; Hunter, D. J.; Jackson, R. D.; Kolonel, L. N.; Kooperberg, C.; Küry, S.; Kury, S.; LaCroix, A.; Laurie, C. C.; Laurie, C. A.; Lemire, M.; Lemire, M.; Levine, D.; Ma, J.; Makar, K. W.; Qu, C.; Taverna, D.; Ulrich, C. M.; Wu, K.; Kono, S.; West, D. W.; Berndt, S. I.; Bezieau, S.; Brenner, H.; Campbell, P. T.; Chan, A. T.; Chang-Claude, J.; Coetzee, G. A.; Conti, D. V.; Duggan, D.; Figueiredo, J. C.; Fortini, B. K.; Gallinger, S. J.; Gauderman, W. J.; Giles, G.; Green, R.; Haile, R.; Harrison, T. A.; Hoffmeister, M.; Hopper, J. L.; Hudson, T. J.; Jacobs, E.; Iwasaki, M.; Jee, S. H.; Jenkins, M.; Jia, W.-H.; Joshi, A.; Li, L.; Lindor, N. M.; Matsuo, K.; Moreno, V.; Mukherjee, B.; Newcomb, P. A.; Potter, J. D.; Raskin, L.; Rennert, G.; Rosse, S.; Severi, G.; Schoen, R. E.; Seminara, D.; Shu, X.-O.; Slattery, M. L.; Tsugane, S.; White, E.; Xiang, Y.-B.; Zanke, B. W.; Zheng, W.; Le Marchand, L.; Casey, G.; Gruber, S. B.; Peters, U. Polym. Chem. 2015, 6, 7138.
- 36 Stempfle, F.; Schemmer, B.; Oechsle, A.-L.; Mecking, S. Polym. Chem. 2015, 6, 7133.
- 37 Celli, A.; Barbiroli, G.; Berti, C.; Francesco, D. C.; Lorenzetti, C.; Marchese, P.; Marianucci, E. J. Polym. Sci. Part B: Polym. Phys. 2007, 45, 1053.
- 38 Papageorgiou, G. Z.; Tsanaktsis, V.; Papageorgiou, D. G.; Exarhopoulos, S.; Papageorgiou, M.; Bikiaris, D. N. Polymer 2014, 55, 3846.
- 39 Diao, L.; Su, K.; Li, Z.; Ding, C. RSC Adv. 2016, 6, 27632.
- 40 Liu, Y.-L.; Chou, C.-I. J. Polym. Sci. Part A: Polym. Chem. 2005, 43, 5267.
- 41 Hu, F. S.; Yadav, S. K.; La Scala, J. J.; Sadler, J. M.; Palmese, G. R. Macromol. Chem. Phys. 2015, 216, 1441.
- 42 Li, X. G.; Huang, M. R.; Bai, H. Angew. Makromol. Chem. 1998, 256, 9.
- 43 Li, F.; Xu, X.; Li, Q.; Li, Y.; Zhang, H.; Yu, J.; Cao, A. Polym. Degrad. Stab. 2006, 91, 1685.
- 44 Wang, G.; Jiang, M.; Zhang, Q.; Wang, R.; Zhou, G. RSC Adv. 2017, 7, 13798.
- 45 Zhou, W.; Wang, X.; Yang, B.; Xu, Y.; Zhang, W.; Zhang, Y.; Ji, J. Polym. Degrad. Stab. 2013, 98, 2177.