Chitosan/MCM-41 nanocomposites for efficient beryllium separation
Corresponding Author
Rania E. Morsi
Analysis and Evaluation Department, Egyptian Petroleum Research Institute, Cairo, 11727 Egypt
Correspondence to: R. E. Morsi (E-mail: [email protected])Search for more papers by this authorMohamed A. Elsherief
Nuclear Materials Authority, P.O. Box 530 Maadi, Cairo, Egypt
Search for more papers by this authorM. Shabaan
Nuclear Materials Authority, P.O. Box 530 Maadi, Cairo, Egypt
Search for more papers by this authorM. Z. Elsabee
Department of Chemistry, Faculty of Science, Cairo University, Cairo, 12613 Egypt
Search for more papers by this authorCorresponding Author
Rania E. Morsi
Analysis and Evaluation Department, Egyptian Petroleum Research Institute, Cairo, 11727 Egypt
Correspondence to: R. E. Morsi (E-mail: [email protected])Search for more papers by this authorMohamed A. Elsherief
Nuclear Materials Authority, P.O. Box 530 Maadi, Cairo, Egypt
Search for more papers by this authorM. Shabaan
Nuclear Materials Authority, P.O. Box 530 Maadi, Cairo, Egypt
Search for more papers by this authorM. Z. Elsabee
Department of Chemistry, Faculty of Science, Cairo University, Cairo, 12613 Egypt
Search for more papers by this authorABSTRACT
Chitosan nanoparticles (Ch NPs) with individual particles 10–30 nm in size and average aggregate sizes of 240 nm were prepared via ionic gelation. Ordered mesoporous Mobil Composition of Matter No. 41 (MCM-41) with a surface area of 1590 m2/g was prepared via a sol–gel method. The nanocomposites were prepared via the in situ dispersion of MCM-41 in chitosan followed by ionic gelation with a multivalent anion to produce MCM-41-impregnated Ch NPs or via the mixture of dispersed MCM-41 with preprepared Ch NPs to produce Ch NPs supported on MCM-41. The beryllium-uptake efficiency was studied with different pH values, contact times, and initial Be(II) concentrations. The maximum achieved uptake efficiencies of the nanocomposites (95% and 96%) were superior to that of MCM-41 (38%) and higher than that of Ch NPs (90%). The nanocomposite formulas facilitated post-treatment separation while maintaining a high beryllium-uptake efficiency. The Be(II)-uptake process for all of the materials followed the pseudo-second-order kinetic model and both the Langmuir and Freundlich isotherms. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 46040.
REFERENCES
- 1 Thorat, D. D.; Tripathi, B. M.; Sathiyamoorthy, D. Hydrometallurgy 2011, 109, 18.
- 2 Zaki, E. E.; Ismail, Z. H.; Daoud, J. A.; Aly, H. F. Hydrometallurgy 2005, 80, 221.
- 3 Othman, S. H.; Shabaan, M.; Demerdash, M.; Saleh, M. M. J. Nucl. Mater. 2009, 392, 427.
- 4 Taylor, T. P.; Ding, M.; Ehler, D. S.; Foreman, T. M.; Kaszuba, J. P.; Sauer, N. N. J. Environ. Sci. Health Part A 2003, 38, 439.
- 5 Vaessen, H. A. M. G.; Szteke, B. Food Addit. Contam. 2000, 17, 149.
- 6 Kolanz, M. E. Appl. Occup. Environ. Hyg. 2001, 16, 559.
- 7 Kolanz, M. E.; Madl, A. K.; Kelsh, M. A.; Kent, M. S.; Kalmes, R. M.; Paustenbach, D. J. Appl. Occup. Environ. Hyg. 2001, 16, 593.
- 8 Knudson, T. L.; Kolanz, M. E. J. Occup. Environ. Hyg. 2009, 6, 758.
- 9 Okutani, T.; Tsuruta, Y.; Sakuragawa, A. Anal. Chem. 1993, 65, 1273.
- 10 Sittig, M. Handbook of Toxic and Hazardous Chemicals and Carcinogens; Noyes Publications: Norwich, NY, 1985.
- 11 Benamer, S.; Mahlous, M.; Tahtat, D.; Nacer-Khodja, A.; Arabi, M.; Lounici, H.; Mameri, N. Radiat. Phys. Chem. 2011, 80, 1391.
- 12 Tavakoli, O.; Goodarzi, V.; Saeb, M. R.; Mahmoodi, N. M.; Borja, R. J. Hazard. Mater. 2017, 334, 256.
- 13 Tolessa, T.; Zhou, X. X.; Amde, M.; Liu, J. F. Talanta 2017, 169, 91.
- 14 Li, J.; Jiang, B.; Liu, Y.; Qiu, C.; Hu, J.; Qian, G.; Guo, W.; Ngo, H. H. J. Cleaner Prod. 2017, 158, 51.
- 15 Emara, A. A. A.; Tawab, M. A.; El-Ghamry, M. A.; Elsabee, M. Z. Carbohydr. Polym. 2011, 83, 192.
- 16 Liu, Y.; Cao, X.; Hua, R.; Wang, Y.; Liu, Y.; Pang, C.; Wang, Y. Hydrometallurgy 2010, 104, 150.
- 17 Wu, Y.; Wu, J.; Cao, J.; Zhang, Y.; Xu, Z.; Qin, X.; Wang, W.; Yuan, Z. Eur. J. Pharm. Biopharm. 2017, 112, 148.
- 18 He, Z.; Santos, J. L.; Tian, H.; Huang, H.; Hu, Y.; Liu, L.; Leong, K. W.; Chen, Y.; Mao, H. Q. Biomaterials 2017, 130, 28.
- 19 Moritz, M.; Geszke-Moritz, M. Chem. Eng. J. 2013, 228, 596.
- 20 Erel, G.; Kotmakçı, M.; Akbaba, H.; Sözer Karadağlı, S.; Kantarcı, A. G. J. Drug Delivery Sci. Technol. 2016, 36, 161.
- 21 Ji, J.; Hao, S.; Dong, J.; Wu, D.; Yang, B.; Xu, Y. J. Appl. Polym. Sci. 2012, 123, 1684.
- 22 Lorenzo-Lamosa, M. L.; Remuñán-López, C.; Vila-Jato, J. L.; Alonso, M. J. J. Controlled Release 1998, 52, 109.
- 23 Li, Y.; Zhang, S.; Meng, X.; Chen, X.; Ren, G. Carbohydr. Polym. 2011, 83, 130.
- 24 Al-Remawi, M. M. A. Am. J. Appl. Sci. 2012, 9, 1091.
- 25 Madala, S.; Nadavala, S. K.; Vudagandla, S.; Boddu, V. M.; Abburi, K. Arab. J. Chem. 2017, 10, S1883.
- 26 Ngah, W. S. W.; Fatinathan, S. Chem. Eng. J. 2008, 143, 62.
- 27 Zhu, H. Y.; Fu, Y. Q.; Jiang, R.; Yao, J.; Xiao, L.; Zeng, G. M. Bioresour. Technol. 2012, 105, 24.
- 28 Liu, C.; Naismith, N.; Economy, J. J. Chromatogr. A 2004, 1036, 113.
- 29 Reddy, D. H. K.; Lee, S.-M. Adv. Colloid Interface Sci. 2013, 201, 68.
- 30 Repo, E.; Malinen, L.; Koivula, R.; Harjula, R.; Sillanpää, M. J. Hazard. Mater. 2011, 187, 122.
- 31 Rashidova, S. S.; Shakarova, D. S.; Ruzimuradov, O. N.; Satubaldieva, D. T.; Zalyalieva, S. V; Shpigun, O. A.; Varlamov, V. P.; Kabulov, B. D. J. Chromatogr. B 2004, 800, 49.
- 32 Dhawade, P.; Jagtap, R. Chem. Sinica 2012, 3, 589.
- 33 Rajiv Gandhi, M.; Meenakshi, S. Int. J. Biol. Macromol. 2012, 50, 650.
- 34 Repo, E.; Warchoł, J. K.; Bhatnagar, A.; Sillanpää, M. J. Colloid Interface Sci. 2011, 358, 261.
- 35 Witoon, T.; Chareonpanich, M. Ceram. Int. 2012, 38, 5999.
- 36 Li, F.; Li, X. M.; Zhang, S. S. J. Chromatogr. A 2006, 1129, 223.
- 37 Jafarzadeh, A.; Sohrabnezhad, S.; Zanjanchi, M. A.; Arvand, M. J. Solid State Chem. 2016, 242, 236.
- 38 Schüth, F.; Schmidt, W. Adv. Mater. 2002, 14, 629.
- 39 Xiao, X.; Zhang, F.; Feng, Z.; Deng, S.; Wang, Y. Phys. E 2015, 65, 4.
- 40 López-León, T.; Carvalho, E. L. S.; Seijo, B.; Ortega-Vinuesa, J. L.; Bastos-González, D. J. Colloid Interface Sci. 2005, 283, 344.
- 41 Al-Sabagh, A. M.; Morsi, R. E.; Elsabee, M. Z.; Naguib, H. F.; Moustafa, Y. M. J. Dispersion Sci. Technol. 2011, 33, 1661.
- 42 Marczenko, Z.; Balcerzak, M. J. Chem. Inf. Model. 2013, 53, 1689.
- 43 Teymouri, M.; Samadi-Maybodi, A.; Vahid, A. Int. Nano Lett. 2011, 1, 34.
- 44 Li, C.; Qiao, X.; Yu, J. Mater. Lett. 2016, 167, 246.
- 45 Qin, J.; Li, B.; Zhang, W.; Lv, W.; Han, C.; Liu, J. Micropor. Mesopor. Mater. 2015, 208, 181.
- 46 Tiwari, D.; Lee, S. M. Water Environ. Res. 2011, 83, 874.
- 47 Cerino-Córdova, F. J.; García-León, A. M.; Soto-Regalado, E.; Sánchez-González, M. N.; Lozano-Ramírez, T.; García-Avalos, B. C.; Loredo-Medrano, J. A. J. Environ. Manage. 2012, 95, S77.
- 48 Figaro, S.; Avril, J. P.; Brouers, F.; Ouensanga, A.; Gaspard, S. J. Hazard. Mater. 2009, 161, 649.
- 49 Alsabagh, A. M.; Fathy, M.; Morsi, R. E. RSC Adv. 2015, 5, 55774.