Influence of diaminobenzoyl-functionalized multiwalled carbon nanotubes on the nonisothermal curing kinetics, dynamic mechanical properties, and thermal conductivity of epoxy–anhydride composites
Uraiwan Pongsa
Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330 Thailand
Search for more papers by this authorChavakorn Samthong
Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330 Thailand
Search for more papers by this authorPiyasan Praserthdam
Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330 Thailand
Search for more papers by this authorCorresponding Author
Anongnat Somwangthanaroj
Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330 Thailand
Correspondence to: A. Somwangthanaroj (E-mail: [email protected])Search for more papers by this authorUraiwan Pongsa
Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330 Thailand
Search for more papers by this authorChavakorn Samthong
Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330 Thailand
Search for more papers by this authorPiyasan Praserthdam
Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330 Thailand
Search for more papers by this authorCorresponding Author
Anongnat Somwangthanaroj
Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330 Thailand
Correspondence to: A. Somwangthanaroj (E-mail: [email protected])Search for more papers by this authorABSTRACT
To obtain advanced materials with a high thermal dissipation, the addition of multiwalled carbon nanotubes containing diverse functionality groups, that is, as-received multiwalled carbon nanotubes (AS-MWCNTs) and diaminobenzoyl multiwalled carbon nanotubes (DA-MWCNTs), to epoxy–anhydride composites was accomplished. According to nonisothermal differential scanning calorimetry analysis, the reactive functional groups present on the surfaces of the AS-MWCNTs and DA-MWCNTs accelerated the nucleophilic addition reaction of epoxy composites. Because of the difference in the reactivities of these functional groups toward epoxy groups, the distinction of fractional conversion and the reaction rate of the curing process were remarkably evident at the early stage. A suitable kinetic model was effectively elucidated with the Málek approach. The curing kinetics could best be described by a two-parameter autocatalytic model as a truncated Šesták–Berggren model. The DA-MWCNTs achieved effective load transfer and active heat conductive pathways; this resulted in good dynamic mechanical and thermal properties. As a result, the diglycidyl ether of bisphenol A/DA-MWCNTs constituted an effective system with enhanced heat dissipation of materials for electronic applications. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43567.
REFERENCES
- 1Petrie, E. M. Epoxy Adhesive Formulations; McGraw-Hill: New York, 2005.
- 2Zhou, T.; Wang, X.; Mingyuan, G. U.; Liu, X. Polymer 2008, 49, 4666.
- 3Gu, J. W.; Zhang, Q. Y.; Dang, J.; Xie, C. Polym. Adv. Technol. 2012, 23, 1025.
- 4Zhu, B. L.; Ma, J.; Wu, J.; Yung, K. C.; Xie, C. S. J. Appl. Polym. Sci. 2010, 118, 2754.
- 5Li, S. S.; Qi, S. H.; Liu, N. L.; Cao, P. Thermochim. Acta 2011, 523, 111.
- 6Yu, H.; Li, L. L.; Kido, T.; Xi, G. N.; Xu, G. C.; Guo, F. J. Appl. Polym. Sci. 2012, 124, 669.
- 7Njuguna, J.; Pielichowski, K.; Alcock, J. R. Adv. Eng. Mater. 2007, 9, 835.
- 8Han, M. S.; Lee, Y. K.; Kim, W. N.; Lee, H. S.; Joo, J. S.; Park, M.; Lee, H. J.; Park, C. R. Macromol. Res. 2009, 17, 863.
- 9Wu, A. S.; Chou, T. W. Mater. Today 2012, 15, 302.
- 10Shearer, C. J.; Cherevan, A.; Eder, D. Adv. Mater. 2014, 26, 2295.
- 11Qian, D.; Wagner, G. J.; Liu, W. K.; Yu, M. F.; Ruoff, R. S. Appl. Mech. Rev. 2002, 55, 495.
10.1115/1.1490129 Google Scholar
- 12Volder, M. F. L. D.; Tawfick, S. H.; Baughman, R. H.; Hart, A. J. Science 2013, 339, 535.
- 13Zhang, Q.; Huang, J. Q.; Qian, W. Z.; Zhang, Y. Y.; Wei, F. Small 2013, 9, 1237.
- 14Liu, S.; Chen, F.; Zhang, Y.; Shen, Q.; Huang, Z.; Zhang, L. Polym. Compos. 2014, 35, 548.
- 15Roy, D.; Tiwari, N.; Mukhopadhyay, K.; Saxena, A. K. Polymer 2014, 55, 583.
- 16Wang, B.; Yin, J.; Wang, L.; Gao, Y. Macromol. Mater. Eng. 2014, 299, 344.
- 17Theodore, M.; Hosur, M.; Thomas, J.; Jeelani, S. Mater. Sci. Eng. A 2011, 528, 1192.
- 18Star, A.; Stoddart, J. F.; Steuerman, D.; Diehl, M.; Boukai, A.; Wong, E. W.; Yang, X.; Chung, S. W.; Choi, H.; Heath, J. R. Angew. Chem. Int. Ed. 2001, 40, 1721.
10.1002/1521-3773(20010504)40:9<1721::AID-ANIE17210>3.0.CO;2-F CAS PubMed Web of Science® Google Scholar
- 19Vaisman, L.; Wagner, H. D.; Marom, G. Adv. Colloid Interface Sci. 2006, 128, 37.
- 20Wepasnick, K. A.; Smith, B. A.; Schrote, K. E.; Wilson, H. K.; Diegelmann, S. R.; Fairbrother, D. H. Carbon 2011, 49, 24.
- 21Lee, H. J.; Han, S. W.; Kwon, Y. D.; Tan, L. S.; Baek, J. B. Carbon 2008, 46, 1850.
- 22Han, S. W.; Oh, S. J.; Tan, L. S.; Baek, J. B. Carbon 2008, 46, 1841.
- 23Yang, S. Y.; Ma, C. C. M.; Teng, C. C.; Huang, Y. W.; Liao, S. H.; Huang, Y. L.; Tien, H. W.; Lee, T. M.; Chiou, K. C. Carbon 2010, 48, 592.
- 24Li, N.; Liu, H.; Zhang, Z. Polym. Compos. 2014, 35, 1275.
- 25Zhang, P.; Qui, D.; Chen, H.; Sun, J.; Wang, J.; Qin, C.; Dai, L. J. Mater. Chem. A 2015, 3, 1442.
- 26Kim, K. S.; Jeon, I. Y.; Ahn, S. N.; Kwon, Y. D.; Baek, J. B. J. Mater. Chem. 2011, 21, 7337.
- 27Wang, D. H.; Tan, L. S.; Huang, H.; Dai, L.; Osawa, E. Macromolecules 2008, 42, 114.
- 28Lim, D. H.; Lyons, C. B.; Tan, L. S.; Baek, J. B. J. Phys. Chem. 2008, 112, 12188.
- 29Pongsa, U.; Samthong, C.; Somwangthanaroj, A. Polym. Eng. Sci. 2013, 53, 2194.
- 30Pongsa, U.; Somwangthanaroj, A. J. Appl. Polym. Sci. 2013, 130, 3184.
- 31Chen, W.; Qian, X. M.; He, X. Q.; Liu, Z. Y.; Liu, J. P. J. Appl. Polym. Sci. 2012, 123, 1983.
- 32Kundu, S.; Wang, Y.; Xia, W.; Muhler, M. J. Phys. Chem. C 2008, 112, 16869.
- 33Hou, P. X.; Liu, C.; Cheng, H. M. Carbon 2008, 46, 2003.
- 34Ruelle, B.; Felten, A.; Ghijsen, J.; Drube, W.; Johnson, R. L.; Liang, D.; Erni, R.; Van Tendeloo, G.; Sophie, P.; Dubois, P.; Godfriod, M.; Hecq, M.; Bittencourt, C. Micron 2009, 40, 85.
- 35Coates, M.; Nyokong, T. Int. J. Nanosci. 2013, 12, 1350017.
- 36Okpalugo, T. I. T.; Papakonstantinou, P.; Murphy, H.; McLaughlin, J.; Brown, N. M. D. Carbon 2005, 43, 153.
- 37Koysuren, O.; Karaman, M.; Ozyurt, D. J. Appl. Polym. Sci. 2013, 127, 4557.
- 38Yang, K.; Gu, M.; Guo, Y.; Pan, X.; Mu, G. Carbon 2009, 47, 1723.
- 39Vyazovkin, S.; Burnham, A. K.; Criado, J. M.; Perez-Maqueda, L. A.; Popescu, C.; Sbirrazzuoli, N. Thermochim. Acta 2011, 520, 1.
- 40Foix, D.; Yu, Y.; Serra, A.; Ramis, X.; Salla, J. M. Eur. Polym. J. 2009, 45, 1454.
- 41Vyazovkin, S.; Sbirrazzuoli, N. Macromolecules 1996, 29, 1867.
- 42Fan, M.; Liu, J.; Li, X.; Cheng, J.; Zhang, J. Thermochim. Acta 2013, 554, 39.
- 43Málek, J. Thermochim. Acta 1992, 200, 257.
- 44Šesták, J.; Berggren, G. Thermochim. Acta 1971, 3, 1.
- 45Ventura, I. A.; Rahaman, A.; Lubineau, G. J. Appl. Polym. Sci. 2013, 130, 2722.
- 46Zhou, X. W. T.; Liu, X. H.; Lai, J. Z. eXPRESS Polym. Lett. 2010, 4, 217.
- 47Fernandez-Francos, X.; Ramis, X.; Serra, A. J. Polym. Sci. Part A: Polym. Chem. 2014, 52, 61.
- 48Mohan, P. Polym.-Plast. Technol. 2013, 52, 107.
- 49Kissinger, H. E. Anal. Chem. 1957, 29, 1702.
- 50Harsch, M.; Karger-Kocsis, J.; Holst, M. Eur. Polym. J. 2007, 43, 1168.
- 51Zhou, Z.; Li, A.; Bai, R.; Sun, J. Polym. Compos. 2014, 35, 596.
- 52Málek, J. Thermochim. Acta 1989, 138, 337.
- 53Senum, G. I.; Yang, R. T. J. Therm. Anal. 1977, 11, 445.
- 54Zabihi, O.; Aghaie, M.; Zare, K. J. Therm. Anal. Calorim. 2013, 111, 703.
- 55Wan, J.; Bu, Z. Y.; Xu, C. J.; Li, B. G.; Fan, H. Thermochim. Acta 2011, 519, 72.
- 56Montazeri, A.; Pourshamsian, K.; Riazian, M. Mater. Des. 2012, 36, 408.
- 57Salam, M. B. A.; Hosur, M. V.; Zainuddin, S.; Jeelani, S. Open J. Compos. Mater. 2013, 3, 1.
- 58Fadgett, C. W.; Brenner, D. W. Nano Lett. 2004, 4, 1051.
- 59Khare, K. S.; Khabaz, F.; Khare, R. ACS Appl. Mater. Interfaces 2014, 6, 6098.
Citing Literature
July 5, 2016