Biocomposite proton-exchange membrane electrolytes for direct methanol fuel cells
S Suganthi
Advanced Materials Research Laboratory, Department of Chemistry, Periyar University, Salem, 636011 India
Search for more papers by this authorS Mohanapriya
Advanced Materials Research Laboratory, Department of Chemistry, Periyar University, Salem, 636011 India
Search for more papers by this authorCorresponding Author
V. Raj
Advanced Materials Research Laboratory, Department of Chemistry, Periyar University, Salem, 636011 India
Correspondence to: V. Raj (E-mail: [email protected])Search for more papers by this authorS Suganthi
Advanced Materials Research Laboratory, Department of Chemistry, Periyar University, Salem, 636011 India
Search for more papers by this authorS Mohanapriya
Advanced Materials Research Laboratory, Department of Chemistry, Periyar University, Salem, 636011 India
Search for more papers by this authorCorresponding Author
V. Raj
Advanced Materials Research Laboratory, Department of Chemistry, Periyar University, Salem, 636011 India
Correspondence to: V. Raj (E-mail: [email protected])Search for more papers by this authorABSTRACT
Poly(vinyl alcohol) (PVA)-amino acid (AA) biocomposite membranes are prepared by blending PVA with AAs such as glycine, lysine (LY), and phenyl alanine followed by in situ crosslinking with citric acid (CA) and explored as a new class of biocomposite membrane electrolytes for direct methanol fuel cells (DMFCs). CA crosslinks with PVA through esterification offers adequate chemical, thermal, and morphological stability thereby produces methanol-obstructing close-packed polymeric network. These biocomposite membranes are characterized in terms of mechanical, thermal, sorption, and proton-conducting properties. Hydrophilic nature of AA zwitterions significantly facilitates proton conduction and CA crosslinking mitigates methanol crossover through establishing appropriate balance between hydrophilic/hydrophobic domains. The rational design of membrane microstructure with proper arrangement of hydrophobic/hydrophilic domains is a key to enhance electrochemical selectivity of PVA-AA/CA biocomposite membranes. Biocomposite membrane comprising LY exhibits nearly threefold higher electrochemical selectivity in relation to PVA/CA blend membrane. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43514.
REFERENCES
- 1 Antolini, E.; Salgado, J. R. C.; Gonzalez, E. R. Appl. Catal. B: Environ. 2006, 63, 137.
- 2 Deluca, N. W.; Elabd, Y. A. J. Polym. Sci. Part B: Polym. Phys. 2006, 44, 2201.
- 3 Neburchilov, V.; Martin, J.; Wang, H.; Zhang, J. J. Power Sources 2007, 169, 221.
- 4 Scott, K.; Shukla, A. K.; White, R. E.; Vayenas, C. G.; Gamboa-Aldeco, M. A. Modern Aspects of Electrochemistry; Springer: New York, 2006; Vol. 40, 127.
- 5 Mohanapriya, S.; Bhat, S. D.; Sahu, A. K.; Pitchumani, S.; Sridhar, P.; Shukla, A. K. Energy Environ. Sci. 2009, 2, 1210.
- 6 Silva, V. S.; Weisshaar, S.; Reissner, R.; Ruffmann, B.; Vetter, S.; Mendes, A.; Madeira, L. M.; Nunes, S. J. Power Sources 2005, 145, 485.
- 7 Beatie, P. D.; Orfino, F. P. F.; Basura, V. I.; Zychowska, K.; Ding, J.; Chuy, C.; Scmeisser, J.; Holdcroft, S. J. Electroanal. Chem. 2001, 503, 45.
- 8 Fang, J.; Shen, P. K.; Liu, Q. L. J. Membr. Sci. 2007, 293, 94.
- 9 Ramya, K.; Dhaththreyan, K. S. J. Electroanal. Chem. 2003, 542, 109.
- 10 Kim, D. S.; Park, H. B.; Rhim, J. W.; Lee, Y. M. J. Membr. Sci. 2004, 240, 37.
- 11 Antonucci, P. L.; Arico, A. S.; Creti, P.; Ramunni, E.; Antonucci, V. Solid State Ionics 1999, 125, 431.
- 12 Ling, J.; Savadogo, O. J. Electrochem. Soc. 2004, 151, 1604.
- 13 Othman, M. H. D.; Ismail, A. F.; Mustafa, A. Malaysian Polym. J. 2010, 5, 1.
- 14 Jiang, R. Z.; Chu, D. Electrochem. Solid-State Lett. 2002, 5, A156.
- 15 Ravikumar, M. K.; Shukla, A. K. J. Electrochem. Soc. 1996, 143, 2601.
- 16 Zhang, H.; Li, X.; Zhao, C.; Fu, T.; Shi, Y.; Na, H. J. Membr. Sci. 2008, 308, 66.
- 17 Sahu, A. K.; Selvarani, G.; Bhat, S. D.; Pitchumani, S.; Sridhar, P.; Shukla, A. K.; Narayan, N.; Banarjee, A.; Chandrakumar, N. J. Membr. Sci. 2008, 319, 298.
- 18 Bhat, S. D.; Aminabhavi, T. M. J. Membr. Sci. 2007, 306, 173.
- 19 Smitha, B.; Sridhar, S.; Khan, A. A. J. Membr. Sci. 2005, 259, 10.
- 20 Qiu, Y. R.; Zhang, Q. X. J. Cent. South Uni. Technol. 2003, 10, 117.
- 21 Li, L.; Xu, L.; Wang, Y. Mater. Lett. 2003, 57, 1406.
- 22 Yang, T. Int. J. Hydrogen Energy 2008, 33, 6772.
- 23 Tung, C. C.; Lee, Y. J.; Young, J. M. J. Power Sources 2009, 188, 30.
- 24 Mohanapriya, S.; Bhat, S. D.; Sahu, A. K.; Manokaran, A.; Vijayakumar, R.; Pitchumani, S.; Sridhar, P.; Shukla, A. K. Energy Environ. Sci. 2010, 3, 1746.
- 25 Biggers, J. D.; Summers, M. C.; McGinnis, L. K. Hum. Reprod. Update 1997, 3, 125.
- 26 Yesiloglu, Y.; Kilic, I. Prep. Biochem. Biotechnol. 2004, 34, 365.
- 27 Chanthad, C.; Wootthikanokkhan, J. J. Appl. Polym. Sci. 2006, 101, 1931.
- 28 Kalyani, S.; Smitha, B.; Sridhar, S.; Krishnaiah, A. Ind. Eng. Chem. Res. 2006, 45, 9088.
- 29 Lin, C. W.; Huang, Y. F.; Kannan, A. M. J. Power Sources 2007, 171, 340.
- 30 Tsai, C. E.; Lin, C. W.; Hwang, B. J. J. Power Sources 2010, 195, 2166.
- 31 Bolto, B.; Tran, T.; Hoang, M. Prog. Polym. Sci. 2009, 34, 969.
- 32 Aparicio, M.; Castro, Y.; Duran, A. Solid State Ionics 2005, 176, 333.
- 33 Reddy, N.; Yang, Y. G. Food Chem. 2010, 118, 702.
- 34 Park, H. R.; Chough, S. H.; Yun, Y. H.; Yoon, S. D. J. Polym. Environ. 2005, 13, 4.
- 35 Li, L.; Wang, Y. J. Membr. Sci. 2005, 262, 1.
- 36 Soled, S.; Misceo, G.; McVicker, W. E.; Gates, A.; Guiterrez, A.; Paes, J. Catal. Today 1997, 36, 441.
- 37 Kang, S.; Lee, S. J.; Chang, H. J. Electrochem. Soc. 2007, 154, B1179.
- 38 Chen, Y. C.; Jer, C. S.; Tong, L. K.; Chen, C. W.; Tseng, L. C.; An, H. C. J. Power Sources 2008, 184, 44.
- 39 Song, K. Y.; Lee, H. K.; Kim, H. T. Electrochim. Acta 2007, 53, 637.
- 40 Perry, R. H.; Green, D. W.; Maloney, J. D. In Perry's Chemical Engineers Hand Book , 7th ed.; McGraw-Hill, 1997.
- 41 Jiang, R.; Chu, D. J. Electrochem. Soc. 2004, 151, A69.
- 42 Mohanapriya, S.; Bhat, S. D.; Sahu, A. K.; Manokaran, A.; Pitchumani, S.; Sridhar, P.; Shukla, A. K. J. Bionanosci. 2009, 3, 131.
- 43 Ogawa, T.; Aonuma, T.; Tamaki, T.; Ohashi, H.; Ushiyama, H.; Yamashaita, K.; Yamaguchi, T. Chem. Sci. 2014, 5, 4878.
- 44 Yin, Y.; Xu, T.; He, G. N.; Jiang, Z.; Wu, H. J. Power Sources 2015, 276, 271.
- 45 Paddison, S. J. Annu. Rev. Mater. Res. 2003, 33, 289.
- 46 Crank, J. The Mathematics of Diffusion; Clarendon Press: Oxford, UK, 1975.
- 47 Kreuer, K. D. Solid State Ionics 2000, 136, 149.
- 48 Kreuer, K. D. Chem. Mater. 1996, 8, 610.
- 49 Li, L.; Zhang, J.; Wang, Y. J. Membr. Sci. 2003, 226, 159.
- 50 Smitha, B.; Sridhar, S.; Khan, A. A. J. Power Sources 2006, 159, 846.
- 51 Mohanapriya, S.; Sahu, A. K.; Bhat, S. D.; Pitchumani, S.; Sridhar, P.; George, C.; Chandrakumar, N.; Shukla, A. K. J. Electrochem. Soc. 2011, 158, A1.
Citing Literature
July 5, 2016