Polylactic acid bioconjugated with glutathione: Thermosensitive self-healed networks
Dalila Djidi
Université De Lyon, Saint-Etienne, 42023 France
Ingénierie Des Matériaux Polymères, CNRS, Saint-Etienne, 42023 France
Université De Saint-Etienne, Jean Monnet, Saint-Etienne, 42023 France
Search for more papers by this authorNathalie Mignard
Université De Lyon, Saint-Etienne, 42023 France
Ingénierie Des Matériaux Polymères, CNRS, Saint-Etienne, 42023 France
Université De Saint-Etienne, Jean Monnet, Saint-Etienne, 42023 France
Search for more papers by this authorCorresponding Author
Mohamed Taha
Université De Lyon, Saint-Etienne, 42023 France
Ingénierie Des Matériaux Polymères, CNRS, Saint-Etienne, 42023 France
Université De Saint-Etienne, Jean Monnet, Saint-Etienne, 42023 France
Correspondence to: M. Taha (E-mail: [email protected])Search for more papers by this authorDalila Djidi
Université De Lyon, Saint-Etienne, 42023 France
Ingénierie Des Matériaux Polymères, CNRS, Saint-Etienne, 42023 France
Université De Saint-Etienne, Jean Monnet, Saint-Etienne, 42023 France
Search for more papers by this authorNathalie Mignard
Université De Lyon, Saint-Etienne, 42023 France
Ingénierie Des Matériaux Polymères, CNRS, Saint-Etienne, 42023 France
Université De Saint-Etienne, Jean Monnet, Saint-Etienne, 42023 France
Search for more papers by this authorCorresponding Author
Mohamed Taha
Université De Lyon, Saint-Etienne, 42023 France
Ingénierie Des Matériaux Polymères, CNRS, Saint-Etienne, 42023 France
Université De Saint-Etienne, Jean Monnet, Saint-Etienne, 42023 France
Correspondence to: M. Taha (E-mail: [email protected])Search for more papers by this authorABSTRACT
Polylactic acid was bioconjugated with glutathione (GSH) in a solvent-free one step process. Thermo-reversible networks were first obtained as a consequence of the supramolecular interactions induced by GSH moieties. Then dynamic covalent reactions were added to the networks' synthesis process using dialcohol-functionalized Diels−Alder (DA) adducts. The main properties of these networks were analyzed in relation with their structures and the proportions of supramolecular and DA reactions. The thermo-mechanical properties of the obtained transparent materials and their healing efficiency were evaluated by dynamic mechanical spectroscopy and tensile analyses. Crosslinking/de-crosslinking temperatures varied from 36 to 112°C. The obtained networks showed self-healing ability without external stimuli. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43436.
REFERENCES
- 1 Duncan, R. Nat. Rev. Drug Discov. 2003, 2, 347.
- 2 Langer, R.; Tirrell, D. A. Nature 2004, 428, 487.
- 3 Veronese, F. M. Biomaterials 2001, 22, 405.
- 4 Zalipsky, S. Adv. Drug Delivery Rev. 1995, 16, 157.
- 5 Zhang, S. Nat. Biotech. 2003, 21, 1171.
- 6 Tu, R. S.; Tirrell, M. Adv. Drug. Delivery Rev. 2004, 56, 1537.
- 7 Whitesides, G. M. Small 2005, 1, 172.
- 8 Lutz, J.-F.; Börner, H. G. Prog. Polym. Sci 2008, 33, 1.
- 9 Börner, H. G. Prog. Polym. Sci. 2009, 34, 811.
- 10 Khandare, J.; Minko, T. Prog. Polym. Sci. 2006, 31, 359.
- 11 Pasut, G.; Veronese, F. M. Prog. Polym. Sci. 2007, 32, 933.
- 12 Van Hest, J. C. M. J. Macromol. Sci. Part C: Polym. Rev. 2007, 47, 63.
- 13 Larson, N.; Ghandehari, H. Chem. Mater. 2012, 24, 840.
- 14 Ponnumallayan, P.; Fee, C. J. Langmuir 2014, 30, 14250.
- 15 Bencherif, S. A.; Srinivasan, A.; Sheehan, J. A.; Walker, L. M.; Gayathri, C.; Gil, R.; Hollinger, J. O.; Matyjaszewski, K.; Washburn, N. R. Acta Biomater. 2009, 5, 1872.
- 16 Pelegri-O'Day, E. M.; Lin, E.-W.; Maynard, H. D. J. Am. Chem. Soc. 2014, 136, 14323.
- 17 Salmaso, S.; Bersani, S.; Mastrotto, F.; Tonon, G.; Schrepfer, R.; Genovese, S.; Caliceti, P. J. Controlled Release 2012, 162, 176.
- 18 Pasut, G.; Sergi, M.; Veronese, F. M. Adv. Drug Delivery Rev. 2008, 60, 69.
- 19 Veronese, F. M.; Harris, J. M. Adv. Drug Delivery Rev. 2002, 54, 453.
- 20 Alexis, F.; Basto, P.; Levy-Nissenbaum, E.; Radovic-Moreno, A. F.; Zhang, L.; Pridgen, E.; Wang, A. Z.; Marein, S. L.; Westerhof, K.; Molnar, L. K.; Farokhzad, O. C. Chem. Med. Chem. 2008, 3, 1839.
- 21 Barwal, I.; Sood, A.; Sharma, M.; Singh, B.; Yadav, S. C. Colloids Surf. B 2013, 101, 510.
- 22 Li, Z. L.; Xiong, X. Y.; Li, Y. P.; Gong, Y. C.; Gui, X. X.; Ou-Yang, X.; Lin, H. S.; Zhu, L. J.; Xie, J. L. J. Appl. Polym. Sci 2010, 115, 1573.
- 23 Gauthier, M. A.; Klok, H.-A. Chem. Commun. 2008, 2591.
- 24 Guadagno, L.; Raimondo, M.; Naddeo, C.; Longo, P. Application of Self-Healing Materials in Aerospace Engineering; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013; Chapter 17, p 401.
- 25 Kessler, M. R.; Sottos, N. R.; White, S. R. Compos. A 2003, 34, 743.
- 26 Djidi, D.; Mignard, N.; Taha, M. Ind. Corp. Prod. 2015, 72, 220.
- 27 Lehn, J. M. Prog. Polym. Sci. 2005, 30, 814.
- 28 Rowan, S. J.; Cantrill, S. J.; Cousins, G. R. L.; Sanders, J. K. M.; Stoddart, J. F. Angew. Chem. Int. 2002, 41, 898.
- 29 Imato, K.; Nishihara, M.; Kanehara, T.; Amamoto, Y.; Takahara, A.; Otsuka, H. Angew. Chem. Int. Ed. 2012, 51, 1138.
- 30 Chen, Y.; Kushner, A. M.; Williams, G. A.; Guan, Z. B. Nat. Chem. 2012, 4, 467.
- 31 Wang, Q.; Mynar, J. L.; Yoshida, M.; Lee, E.; Lee, M.; Okuro, K.; Kinbara, K.; Aida, T. Nature 2010, 463, 339.
- 32 Harada, A.; Kobayashi, R.; Takashima, Y.; Hashidzume, A.; Yamaguchi, H. Nat. Chem. 2011, 3, 34.
- 33 Capelot, M.; Montarnal, D.; Tournilhac, F.; Leibler, L. J. Am. Chem. Soc. 2012, 134, 7664.
- 34 Cordier, P.; Tournilhac, F.; Soulié -Ziakovic, C.; Leibler, L. Nature 2008, 451, 977.
- 35 Chen, X. G.; Dam, M. A.; Ono, K.; Mal, A.; Shen, H. B.; Nutt, S. R.; Sheran, K.; Wudl, F. Science 2002, 295, 1698.
- 36 Chen, X.; Wudl, F.; Mal, A. K.; Shen, H. B.; Nutt, S. R. Macromolecules 2003, 36, 1802.
- 37 Liu, Y. L.; Hsieh, C. Y. J. Polym. Sci. Part A: Polym. Chem. 2006, 44, 905.
- 38 Liu, Y. L.; Chen, Y. W. Macromol. Chem. Phys. 2007, 208, 224.
- 39 Zeng, C.; Seino, H.; Ren, J.; Hatanaka, K.; Yoshie, N. Macromolecules 2013, 46, 1794.
- 40 Kavitha, A. A.; Singha, N. K. ACS Appl. Mater. Interfaces 2009, 1, 1427.
- 41 Postiglione, G.; Turri, S.; Levi, M. Prog. Org. Coat. 2015, 78, 526.
- 42 Zhang, Y. C.; Broekhuis, A. A.; Picchioni, F. Macromolecules 2009, 42, 1906.
- 43 Yoshie, N.; Watanabe, M.; Araki, H.; Ishida, K. Polym. Degrad. Stab. 2010, 95, 826.
- 44 Zhang, J. J.; Niu, Y.; Huang, C. L.; Xiao, L. P.; Chen, Z. T.; Yang, K. K.; Wang, Y. Z. Polym. Chem. 2012, 3, 1390.
- 45 Plaisted, T. A.; Nemat-Nasser, S. Acta Mater. 2007, 55, 5684.
- 46 Peterson, A. M.; Jensen, R. E.; Palmese, G. R. ACS Appl. Mater. Interfaces 2010, 2, 1141.
- 47 Reutenauer, P.; Buhler, E.; Boul, P. J.; Candau, S. J.; Lehn, J. M. Chem. Eur. J. 2009, 15, 1893.
- 48 Yoshie, N.; Saito, S.; Oya, N. Polymer 2011, 52, 6074.
- 49 Bergman, S. D.; Wudl, F. J. Mater. Chem. 2008, 18, 41.
- 50 Palleau, E.; Reece, S.; Desai, S. C.; Smith, M. E.; Dickey, M. D. Adv. Mater. 2013, 25, 1589.
- 51 Ying, H.; Zhang, Y.; Cheng, J. Nat. Commun. 2014, 5, 3218.
- 52 Holten-Andersena, N.; Harringtonb, M. J.; Birkedalc, H.; Leed, B. P.; Messersmithd, P. B.; Leea, K. Y. C.; Waitee, J. H. Proc. Natl. Acad. Sci. U.S.A. 2011, 108, 2651.
- 53 Huang, L.; Yi, N.; Wu, Y.; Zhang, Y.; Zhang, Q.; Huang, Y.; Ma, Y.; Chen, Y. Adv. Mater. 2013, 25, 2224.
- 54 Phadkea, A.; Zhanga, C.; Armanb, B.; Hsuc, C. -C.; Mashelkard, R. A.; Leled, A. K.; Tauberc, M. J.; Aryab, G.; Varghesea, S. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 4383.
- 55 Fox, J.; Wie, J. J.; Greenland, B. W.; Burattini, S.; Hayes, W.; Colquhoun, H. M.; Mackay, M. E.; Rowan, S. J. J. Am. Chem. Soc. 2012, 134, 5362.
- 56 Tawney, P. O.; Synder, R. H.; Conger, R. P.; Leibbrand, K. A.; Stiteler, C. H.; Williams, A. R. J. Org. Chem. 1961, 26, 15.
- 57 Okhay, N.; Mignard, N.; Jegat, C.; Taha, M. Des. Monomers Polym. 2013, 16, 475.
- 58 Jegat, C.; Mignard, N. Polym. Bull. 2008, 60, 799.
- 59 Belkhir, K.; Shen, H.; Chen, J.; Jegat, C.; Taha, M. Eur. Polym. J. 2015, 66, 290.