Controlled dual release study of curcumin and a 4-aminoquinoline analog from gum acacia containing hydrogels
Corresponding Author
Blessing Aderibigbe
Department of Chemistry, University of Fort Hare, Alice Campus, South Africa
Correspondence to: B. Aderibigbe (E-mail: [email protected])Search for more papers by this authorEmmanuel Sadiku
Department of Chemical, Metallurgical and Material Engineering, Tshwane University of Technology, Pretoria, South Africa
Search for more papers by this authorJarugala Jayaramudu
Department of Chemical, Metallurgical and Material Engineering, Tshwane University of Technology, Pretoria, South Africa
DST/CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Pretoria 0001 South Africa
Search for more papers by this authorSuprakas Sinha Ray
DST/CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Pretoria 0001 South Africa
Department of Applied Chemistry, University of Johannesburg, Doornfontein, 2028 Johannesburg, South Africa
Search for more papers by this authorCorresponding Author
Blessing Aderibigbe
Department of Chemistry, University of Fort Hare, Alice Campus, South Africa
Correspondence to: B. Aderibigbe (E-mail: [email protected])Search for more papers by this authorEmmanuel Sadiku
Department of Chemical, Metallurgical and Material Engineering, Tshwane University of Technology, Pretoria, South Africa
Search for more papers by this authorJarugala Jayaramudu
Department of Chemical, Metallurgical and Material Engineering, Tshwane University of Technology, Pretoria, South Africa
DST/CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Pretoria 0001 South Africa
Search for more papers by this authorSuprakas Sinha Ray
DST/CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Pretoria 0001 South Africa
Department of Applied Chemistry, University of Johannesburg, Doornfontein, 2028 Johannesburg, South Africa
Search for more papers by this authorABSTRACT
The potential of gum acacia containing hydrogels as controlled dual-drug delivery systems for antiprotozoal agents was investigated. 4-Aminoquinoline analog and curcumin were selected as model drugs because they exhibit antiprotozoal activity. The maximum release time was greater for curcumin than for the 4-aminoquinoline analog at 37°C, thereby enabling the active ingredients to work over different periods of time. 4-Aminoquinoline analog exhibited a short term release profile while curcumin exhibited a sustained and long term release profile. The release profiles of the drugs were found to be influenced by the degree of crosslinking of the hydrogel network with gum acacia. The release profiles were analyzed using a power law equation proposed by Peppas. The release mechanism of the 4-aminoquinoline was found to be anomalous transport while that of curcumin was quasi-Fickian diffusion mechanism in all the hydrogel networks according to the release exponent. The preliminary results suggest that these systems are potential dual-drug delivery system for antiprotozoal agents with different pharmacokinetics. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 41613.
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
app41613-sup-0001-suppinfo.pdf223.1 KB |
Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1 Wei, L.; Cai, C.; Lin, J.; Chen, T. Biomaterials 2009, 30, 2606.
- 2 Watanabe, M.; Kawano, K.; Toma, K.; Hattori, Y.; Maitani, Y. J. Control. Release 2008, 127, 231.
- 3 Aderibigbe, B. A.; Neuse, E. W.; Sadiku, E. R.; Shina Ray, S.; Smith, P. J. J. Biomed. Mater. Res. Part A 2013, 102, 1941.
- 4 Aderibigbe, B. A.; Neuse, E. W. J. Inorg. Organomet. Polym. Mater. 2012, 22, 429.
- 5 Nkazi, B. D.; Neuse, E. W.; Aderibigbe, B. A. J. Inorg. Organomet. Polym. Mater. 2012, 22, 886.
- 6 Hoffman, A. S. Adv. Drug Deliv. Rev. 2002, 54, 3.
- 7 Yannas, I. V.; Lee, E.; Orgill, D.; Skrabut, E. M.; Murphy, G. M. PNAS 1989, 86, 933.
- 8 Hubbell, J. A. Curr. Opin. Solid State Mater. Sci. 1998, 3, 246.
- 9 Kim, B. S.; Nikolovski, J.; Bonadio, J.; Mooney, D. J. Nat. Biotech. 1999, 17, 979.
- 10 Das, A.; Wadhwa, S.; Srivastav, A. K. Drug Deliv. 2006, 13, 139.
- 11 Nishi, K. K.; Antony, M.; Jayakrishnan, A. J. Pharm. Pharmacol. 2007, 59, 485.
- 12 Bhattarai, N.; Gunn, J.; Zhang, M. Adv. Drug Deliv. Rev. 2010, 62, 83.
- 13 Izydorczyk, M.; Cui, S. W.; Wang, Q. http://uqu.edu.sa/files2/tiny_mce/plugins/filemanager/files/4300270/1/2/1574_C006.pdf. Accessed 20 June 2013.
- 14 Gils, P. S.; Ray, D.; Sahoo, P. K. Int J. Biol. Macromol. 2010, 46, 237.
- 15 Raghavendra, G. M.; Jayaramudu, T.; Varaprasad, K.; Sadiku, E. R.; Sinha Ray, S.; Mohana Rajua, K. Carbohydr. Polym. 2013, 93, 553.
- 16 Paulino, A. T.; Guilherme, M. R.; Mattoso, L. H. C.; Tambourgi, E. B. Metal Contain. Metallo-Supramolecular Polym. Mater. 2010, 211, 1196.
- 17 Juby, K. A.; Dwivedi, C.; Kumar, M.; Kota, S.; Misra, H. S.; Bajaj, P. N. Carbohydr. Polym. 2012, 89, 906.
- 18 Kaith, B. S.; Ranjta, S. Desalin. Water Treat. 2010, 24, 28.
- 19 Santos, M. C.; Guilherme, M. R.; Espires-Carrion, R. C.; Reis, A. V. http://www.cifarp.com.br/cd2011/abstracts/NSP%20106%20-%20986.pdf. Accessed 30 April 2014.
- 20 Dostelek, J.; Johas, U. Adv. Eng. Appl. Sci. 2012, 1, 5.
- 21 Han, Y. A.; Singh, M.; Saxen, B. B. Contraception 2007, 76, 132.
- 22 Fathollahiopur, S.; Maziarfar, S.; Tavakoli, J. Characterization and Evaluation of Acacia Gum Loaded PVA Hybrid Wound Dressing. Biomedical Engineering (ICBME), 18–20 December 2013, 20th Iranian Conference, pp 149–154.
- 23 Malaria, WHO fact sheet No. 94. http://www.who.int/mediacentre/factsheets/fs094/en/. Accessed 26 August 2014.
- 24 Ward, S. A.; Bray, P. G.; Ritchie, G. Y. In Drug Transport in Antimicrobial and Anticancer Chemotherapy; N. H. Georgopapadakou Ed.; Dekker: New York, 1995; p 353–376.
- 25 Zaffanello, M.; Franchini, M.; Fanos, V. Pharmacotherapy 2008, 28, 125.
- 26 Cui, L.; Miao, J.; Cui, L. Antimicrob. Agent Chemother. 2007, 51, 488.
- 27 De, D.; Byers, L. D.; Krogstad, D. J. J. Heterocycl. Chem. 1997, 34, 315.
- 28 Madrid, P. B.; Wilson, N. T.; De Risi, J. L.; Guy, R. K. J. Comb. Chem. 2004, 6, 437.
- 29
Rojas, F. A.;
Kouznetsov, V. V. J. Braz. Chem. Soc. 2011, 22, S1.
10.1590/S0103-50532011000900021 Google Scholar
- 30 Krishna Mohan, P. R.; Sreelakshmi, G.; Muraleedharan, C. V.; Joseph, R. Vib. Spetrosc. 2012, 62, 77.
- 31 Rao, Y. N.; Banerjee, D.; Datta, A.; Das, S. K.; Guin, R.; Saha, A. Radiat. Phys. Chem. 2010, 79, 1240.
- 32 Gils, P. S.; Ray, D.; Mohanta, G. P.; Manavalan, R.; Sahoo, P. K. Int. J. Pharm. Pharm. Sci. 2009, 1, 43.
- 33 Lucht, L. M.; Peppas, N. A. J. Appl. Polym. Sci. 1987, 33, 1557.
- 34 Nagireddy, N. R.; Murali, M. Y.; Kokkarachedu, V.; Sakey, R.; Kanikireddy, V.; Alias, J. P.; Konduru, M. R. J. Polym. Res. 2011, 18, 2285.
- 35 Zohuriaan-Mehr, M. J.; Motazedi, I. Z.; Kabiri, I. K.; Ershad-Langroudi, I. A.; Allahdadi, I. J. Appl. Polym. Sci. 2006, 102, 5667.
- 36 Raji, Z.; Kos, G.; Zorc, B.; Singh, P. P.; Singh, S. Acta Pharm. 2009, 59, 107.
- 37 Dandekar, P. P.; Jain, R.; Patil, S.; Dhumal, R.; Tiwari, D.; Sharma, S.; Vanage, G.; Patravale, V. J. Pharm. Sci. 2010, 99, 4992.
- 38 Nishi, K. K.; Jayakrishnan, A. Biomacromolecules 2007, 8, 84.
- 39 Ritger, P. L.; Peppas, N. A. J. Control. Release 1987, 5, 23.
- 40 Colombo, P.; Bettini, R.; Catellani, P. L.; Santi, P.; Peppas, N. A. Eur. J. Pharm. Sci. 1999, 9, 33.
- 41 Castro, E.; Mosquera, V.; Katime, I. Nanomater. Nanotechnol. 2012, 2, 1.
- 42 Perale, G.; Rossi, F.; Santoro, M.; Peviani, M.; Papa, S.; Llupi, D.; Torriani, P.; Micotti, E.; Previdi, S.; Cervo, L.; Sundström, E.; Boccaccini, A. R.; Masi, M.; Forloni, G.; Veglianese, P. J. Control. Release 2012, 159, 271.
Citing Literature
March 10, 2015