Cellulose nanocrystal driven crystallization of poly(d,l-lactide) and improvement of the thermomechanical properties
Sandra Camarero-Espinosa
Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
Search for more papers by this authorDylan J. Boday
IBM Materials Engineering, Tucson, Arizona, 85744-0002
Search for more papers by this authorChristoph Weder
Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
Search for more papers by this authorCorresponding Author
E. Johan Foster
Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
Virginia Tech, Department of Materials Science and Engineering, 213 Holden Hall, 445 Old Turner Street, Blacksburg, Virginia, 24061
Correspondence to: E. J. Foster (E - mail: [email protected])Search for more papers by this authorSandra Camarero-Espinosa
Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
Search for more papers by this authorDylan J. Boday
IBM Materials Engineering, Tucson, Arizona, 85744-0002
Search for more papers by this authorChristoph Weder
Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
Search for more papers by this authorCorresponding Author
E. Johan Foster
Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
Virginia Tech, Department of Materials Science and Engineering, 213 Holden Hall, 445 Old Turner Street, Blacksburg, Virginia, 24061
Correspondence to: E. J. Foster (E - mail: [email protected])Search for more papers by this authorABSTRACT
The technological exploitation of polylactide in fields requiring wide range of operating conditions is limited by the low crystallization rate of the polymer and therewith the low thermomechanical stability. Here we report the crystallization and consequent improvement of the thermomechanical properties of originally amorphous poly(d,l-lactide) (d : l ratio 11 : 89) loaded with cellulose nanocrystals (CNCs). Isothermal treatment of samples with different CNC contents and at various temperatures, showed up to 6 wt % crystalline phase formation, as confirmed by differential scanning calorimetry and X-ray diffraction measurements. Under a particular set of annealing conditions, CNCs promote the formation of a lamellar structure. This provides the system with higher order and cohesion which in combination with stress-transfer between CNCs, led to an increase of the storage modulus in the rubbery plateau up to 30 times (from 2.7 MPa up to 79 MPa), a rise of the melting temperature up to 50°C, and an improvement of the Young's modulus up to 40%. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 41607.
Supporting Information
Additional Supporting Information may be found in the online version of this article.
Filename | Description |
---|---|
app41607-sup-0001-suppinfo01.pdf1.2 MB |
Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1 Drumright, R. E.; Gruber, P. R.; Henton, D. E. Adv. Mater. 2000, 12, 1841.
- 2 Nampoothiri, K. M.; Nair, N. R.; John, R. P. Bioresoure Technol. 2010, 101, 8493.
- 3 Vieira, M. G. A.; da Silva, M. A.; dos Santos, L. O.; Beppu, M. M. Eur. Polym. J. 2011, 47, 254.
- 4 Yu, L.; Dean, K.; Li, L. Prog. Polym. Sci. 2006, 31, 576.
- 5 Bopp, R.; Whelan, J. Method for Producing Semicrystalline Polylactic Acid Articles; US Patent 20030068405 A1, 2003.
- 6 Auras, R.; Harte, B.; Selke, S. Macromol. Biosci. 2004, 4, 835.
- 7 Weber, C. J.; Haugaard, V.; Festersen, R.; Bertelsen, G. Food Addit. Contam. 2002, 19, 172.
- 8 Ulery, B. D.; Nair, L. S.; Laurencin, C. T. J. Polym. Sci. B Polym. Phys. 2011, 49, 832.
- 9 Rhim, J.-W.; Park, H.-M.; Ha, C.-S. Prog. Polym. Sci. 2013, 38, 1629.
- 10 Ovitt, T. M.; Coates, G. W. J. Am. Chem. Soc. 1999, 121, 4072.
- 11 Zhong, Z. Y.; Dijkstra, P. J.; Feijen, J. J. Am. Chem. Soc. 2003, 125, 11291.
- 12
Zhong, Z. Y.;
Dijkstra, P. J.;
Feijen, J. Angew. Chem. Int. Ed. 2002, 41, 4510.
10.1002/1521-3773(20021202)41:23<4510::AID-ANIE4510>3.0.CO;2-L CAS PubMed Web of Science® Google Scholar
- 13 Perego, G.; Cella, G. D.; Bastioli, C. J. Appl. Polym. Sci. 1996, 59, 37.
- 14 Liu, Y.; Wang, L.; He, Y.; Fan, Z.; Li, S. Polym. Int. 2010, 59, 1616.
- 15 Mano, J. F.; Wang, Y. M.; Viana, J. C.; Denchev, Z.; Oliveira, M. J. Macromol. Mater. Eng. 2004, 289, 910.
- 16 Zhang, J. M.; Duan, Y. X.; Sato, H.; Tsuji, H.; Noda, I.; Yan, S.; Ozaki, Y. Macromolecules 2005, 38, 8012.
- 17 Desantis, P.; Kovacs, A. J. Biopolymers 1968, 6, 299.
- 18 Hoogsteen, W.; Postema, A. R.; Pennings, A. J.; Ten Brinke, G.; Zugenmaier, P. Macromolecules 1990, 23, 634.
- 19 Eling, B.; Gogolewski, S.; Pennings, A. J. Polymer 1982, 23, 1587.
- 20 Ikada, Y.; Jamshidi, K.; Tsuji, H.; Hyon, S. H. Macromolecules 1987, 20, 904.
- 21 Schmidt, S. C.; Hillmyer, M. A. J. Polym. Sci. B Polym. Phys. 2001, 39, 300.
- 22 Dorgan, J. R.; Braun, B. Polymer Composites Incorporating Stereocomplexation; US Patent 20110319509 A1, 2011.
- 23 Anderson, K. S.; Hillmyer, M. A. Polymer 2006, 47, 2030.
- 24 Stoclet, G.; Seguela, R.; Lefebvre, J. M.; Elkoun, S.; Vanmansart, C. Macromolecules 2010, 43, 1488.
- 25 Stoclet, G.; Seguela, R.; Vanmansart, C.; Rochas, C.; Lefebvre, J. M. Polymer 2012, 53, 519.
- 26 Stoclet, G.; Seguela, R.; Lefebvre, J. M.; Rochas, C. Macromolecules 2010, 43, 7228.
- 27 Pluta, M.; Galeski, A. Biomacromolecules 2007, 8, 1836.
- 28 Nam, J. Y.; Ray, S. S.; Okamoto, M. Macromolecules 2003, 36, 7126.
- 29 Ray, S. S.; Bousmina, M. Prog. Mater. Sci. 2005, 50, 962.
- 30 Liao, R.; Yang, B.; Yu, W.; Zhou, C. J. Appl. Polym. Sci. 2007, 104, 310.
- 31 Raquez, J.-M.; Habibi, Y.; Murariu, M.; Dubois, P. Prog. Polym. Sci. 2013, 38, 1504.
- 32 Barrau, S.; Vanmansart, C.; Moreau, M.; Addad, A.; Stoclet, G.; Lefebvre, J. M.; Seguela, R. Macromolecules 2011, 44, 6496.
- 33 Braun, B.; Dorgan, J. R.; Hollingsworth, L. O. Biomacromolecules 2012, 13, 2013.
- 34 De Souza Lima, M. M.; Wong, J. T.; Paillet, M.; Borsali, R.; Pecora, R. Langmuir 2002, 19, 24.
- 35 Šturcová, A.; Davies, G. R.; Eichhorn, S. J. Biomacromolecules 2005, 6, 1055.
- 36 Rusli, R.; Eichhorn, S. J. Appl. Phys. Lett. 2008, 93, 033111.
- 37 Araki, J.; Wada, M.; Kuga, S. Langmuir 2001, 17, 21.
- 38 Habibi, Y.; Lucia, L. A.; Rojas, O. J. Chem. Rev. 2010, 110, 3479.
- 39 Mueller, S.; Weder, C.; Foster, E. J. RSC Adv. 2014, 4, 907.
- 40 Camarero Espinosa, S.; Kuhnt, T.; Foster, E. J.; Weder, C. Biomacromolecules 2013, 14, 1223.
- 41 Capadona, J. R.; Shanmuganathan, K.; Tyler, D. J.; Rowan, S. J.; Weder, C. Science 2008, 319, 1370.
- 42 Coulibaly, S.; Roulin, A.; Balog, S.; Biyani, M. V.; Foster, E. J.; Rowan, S. J.; Fiore, G. L.; Weder, C. Macromolecules 2013, 47, 152.
- 43 Biyani, M. V.; Foster, E. J.; Weder, C. ACS Macro Lett 2013, 2, 236.
- 44 Jorfi, M.; Roberts, M. N.; Foster, E. J.; Weder, C. ACS Appl. Mater. Interfaces 2013, 5, 1517.
- 45 Kumar, S.; Hofmann, M.; Steinmann, B.; Foster, E. J.; Weder, C. ACS Appl. Mater. Interfaces 2012, 4, 5399.
- 46 Capadona, J. R.; Van Den Berg, O.; Capadona, L. A.; Schroeter, M.; Rowan, S. J.; Tyler, D. J.; Weder, C. Nat. Nanotechnol. 2007, 2, 765.
- 47 Tang, L.; Weder, C. ACS Appl. Mater. Interfaces 2010, 2, 1073.
- 48 Pei, A.; Zhou, Q.; Berglund, L. A. Compos. Sci. Technol. 2010, 70, 815.
- 49 Fortunati, E.; Armentano, I.; Zhou, Q.; Puglia, D.; Terenzi, A.; Berglund, L. A.; Kenny, J. M. Polym. Degrad. Stab. 2012, 97, 2027.
- 50 Goffin, A.-L.; Raquez, J.-M.; Duquesne, E.; Siqueira, G.; Habibi, Y.; Dufresne, A.; Dubois, P. Biomacromolecules 2011, 12, 2456.
- 51 Habibi, Y.; Aouadi, S.; Raquez, J.-M.; Dubois, P. Cellulose 2013, 20, 2877.
- 52 Raquez, J. M.; Murena, Y.; Goffin, A. L.; Habibi, Y.; Ruelle, B.; DeBuyl, F.; Dubois, P. Compos. Sci. Technol. 2012, 72, 544.
- 53 Dorgan, J. R.; Hollingsworth, L. O. Sustainable Polymeric Nanocomposites; US Patent 20080118765 A1, 2008.
- 54 Dong, X. M.; Gray, D. G. Langmuir 1997, 13, 3029.
- 55 Johnson Ford, E. N. J. Eng. Fiber. Fabr. 2010, 5, 10.
- 56 Correa, A. C.; Teixeira, E. D. M.; Pessan, L. A.; Capparelli Mattoso, L. H. Cellulose 2010, 17, 1183.
- 57 Stoclet, G.; Seguela, R.; Lefebvre, J. M.; Li, S.; Vert, M. Macromolecules 2011, 44, 4961.
- 58 Saeidlou, S.; Huneault, M. A.; Li, H.; Park, C. B. Prog. Polym. Sci. 2012, 37, 1657.
- 59 Eichhorn, S. J.; Dufresne, A.; Aranguren, M.; Marcovich, N. E.; Capadona, J. R.; Rowan, S. J.; Weder, C.; Thielemans, W.; Roman, M.; Renneckar, S.; Gindl, W.; Veigel, S.; Keckes, J.; Yano, H.; Abe, K.; Nogi, M.; Nakagaito, A. N.; Mangalam, A.; Simonsen, J.; Benight, A. S.; Bismarck, A.; Berglund, L. A.; Peijs, T. J. Mater. Sci. 2010, 45, 1.
Citing Literature
March 10, 2015