Development of polynorbornene as a structural material for microfluidics and flexible BioMEMS
Allison E. Hess-Dunning
Rehabilitation Research and Development, Advanced Platform Technology Center of Excellence, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, 44106
Search for more papers by this authorRussell L. Smith
Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, Ohio, 44016
Search for more papers by this authorCorresponding Author
Christian A. Zorman
Rehabilitation Research and Development, Advanced Platform Technology Center of Excellence, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, 44106
Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, Ohio, 44016
Correspondence to: C. A. Zorman (E-mail: [email protected])Search for more papers by this authorAllison E. Hess-Dunning
Rehabilitation Research and Development, Advanced Platform Technology Center of Excellence, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, 44106
Search for more papers by this authorRussell L. Smith
Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, Ohio, 44016
Search for more papers by this authorCorresponding Author
Christian A. Zorman
Rehabilitation Research and Development, Advanced Platform Technology Center of Excellence, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio, 44106
Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, Ohio, 44016
Correspondence to: C. A. Zorman (E-mail: [email protected])Search for more papers by this authorABSTRACT
Polynorbornene is a class of polymer that exhibits significant potential as a structural material in microelectromechanical systems owing to its dielectric constant and compatibility with silicon-based microfabrication processes. A commercially available version of PNB (AvatrelTM 2585P) is particularly attractive for bioMEMS applications because of its low moisture absorption characteristics, photodefinability, and potential biocompatibility. This study furthers the advancement of PNB as an enabling structural material for microfluidics and flexible bioMEMS applications by developing the following key processing techniques: (1) oxygen plasma-based surface modification for bonding PNB layers to glass substrates, and (2) the monolithic fabrication of free-standing, mechanically flexible electrode arrays using silicon wafers as mechanical supports during fabrication. To further develop PNB for flexible, implantable bioMEMS applications, this study also includes an evaluation of: (1) the tensile properties of free standing structures after accelerated lifetime testing in phosphate-buffered saline, and (2) the in vitro performance of free-standing, mechanically flexible neural microelectrode array-based neural interfaces. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 40969.
REFERENCES
- 1 Meitl, M. A; Zhou, Y.; Gaur, A.; Jeon, S.; Usrey, M.; Strano, M. S.; Rogers, J. A. Nano Lett. 2004, 4, 1643.
- 2 Jeon, M.; Cho, J.; Kim, Y. K.; Jung, D.; Yoon, E. -S.; Shin, S.; Cho, I-J. J. Micromech. Microeng. 2014, 24, 025010.
- 3 Gonenli, I. E.; Celik-Butler, Z.; Butler, D. P. J. Microelectromech. Syst. 2011, 11, 2318
- 4 Metz, S.; Holzer, R.; Renaud, P. Lab Chip 2001, 1, 29.
- 5 Ziegler, D.; Suzuki, T.; Takeuchi, S. J. Microelectromech. Syst. 2006, 15, 1477.
- 6 Gensler, H. M.; Meng, E. J. Micromech. Microeng. 2012, 22, 115031.
- 7 Gensler, H.; Sheybani, R.; Li, P. -Y.; Mann, R. L. O.; Meng, E. Biomed. Microdevices 2012, 14, 483.
- 8 Schneider, F.; Draheim, J.; Kamberger, R.; Wallrabe, U. Sens. Actuators A Phys. 2009, 151, 95.
- 9 Mannsfeld, S. C. B.; Tee, B. C. -K.; Stoltenberg, R. M.; Chen, C. V. H. -H.; Barman, S.; Muir, B. V. O.; Sokolov, A. N.; Reese, C.; Bao, Z. Nat. Mater. 2010, 9, 859.
- 10 Fiddes, L. K.; Raz, N.; Srigunapalan, S.; Tumarkan, E.; Simmons, C A.; Wheeler, A. R.; Kumacheva, E. Biomaterials 2010, 31, 3459.
- 11 Hosokawa, K.; Hanada, K.; Maeda, R. J. Micromech. Microeng. 2002, 12, 1.
- 12 Zhou, X.; Virasawmy, S.; Quan, C. Microsyst. Technol. 2008, 15, 573.
- 13 Lee, K.; He, J.; Clement, R.; Massia, S.; Kim, B. Biosens. Bioelectron. 2004, 20, 404.
- 14 Hopcroft, M.; Kramer, T.; Kim, G.; Takashima, K.; Higo, Y.; Moore, D.; Brugger, J. Fatigue Fract. Eng. Mater. Struct. 2005, 28, 735.
- 15 Lorenz, H.; Despont, M.; Fahrni, N.; LaBianca, N.; Renaud, P.; Vettiger, P. J. Micromech. Microeng. 1997, 7, 121.
- 16 Fernández, L. J.; Altuna, A.; Tijero, M.; Gabriel, G.; Villa, R.; Rodríguez, M. J.; Batlle, M.; Vilares, R.; Berganzo, J.; Blanco, F. J. J. Micromech. Microeng. 2009, 19, 25007.
- 17 Fujiwara, M.; Shirato, Y.; Owari, H.; Watanabe, K.; Matsuyama, M.; Takahama, K.; Mori, T.; Miyao, K.; Choki, K.; Fukushima, T.; Tanaka, T.; Koyanagi, M. Jpn. J. Appl. Phys. 2007, 46, 2395.
- 18 Glukh, K.; Lipian, J. -H.; Mimna, R.; Neal, P. S.; Ravikiran, R.; Rhodes, L. F.; Shick, R. A.; Zhao, X. -M. Proc. SPIE 2000, 4106, 43.
- 19 Joseph, P. J.; Kelleher, H. A.; Allen, S. A. B.; Kohl, P. A. J. Micromech. Microeng. 2005, 15, 35.
- 20 Monajemi, P.; Joseph, P. J.; Kohl, P. A.; Ayazi, F. Proc. IEEE Adv. Packag. Mater. (APM) 2006, 139.
- 21 Shick, R. A.; Jayaraman, S. K.; Goodall, B. L.; Rhodes, L. F.; McDougall, W. C.; Kohl, P.; Bidstrup-Allen, S. A.; Chiniwalla, P. Adv. Microelectron. 1998, 25, 13.
- 22 Rais-Zadeh, M.; Member, S.; Kohl, P. A.; Ayazi, F.J. Microelectromechanical Syst. 2008, 17, 78.
- 23 Joseph, P. J.; Monajemi, P.; Ayazi, F.; Member, S.; Kohl, P. A. IEEE Trans. Adv. Packag. 2007, 30, 19.
- 24 Bakir, M. S.; Kohl, P. A.; Glebov, A. L.; Elce, E.; Bhusari, D.; Lee, M. G.; Meindl, J. D. Flexible Polymer Pillars for Optical Chip Assembly: Materials, Structures, and Characterization. In: A. M. Earman; R. T. Chen; Eds. Integr. Optoelectron. Devices 2007, International Society for Optics and Photonics; 2007, p 647802.
- 25 Hassler, C.; Boretius, T.; Steiglitz, T. Polymers for Neural Implants. J. Polym. Sci. B Polym. Phys. 2011, 49, 18.
- 26 Grove, R.; Kohl, P. A.; Shick, R. A.; Goodall, B. L.; Group, A. T. Properties and Processing of AVATRELTM as a High Performance Dielectric. Multichip Modul. 1997. Int. Conf. Denver, CO, 1997; p 224.
- 27 Hess, A. E.; Dunning, J. L.; Tyler, D. J.; Zorman, C. A. Transducers IEEE 2007, 1235.
- 28 Hess, A. E.; Dunning, J.; Tyler, D.; Zorman, C. A. Development of a Microfabricated Flat Interface Nerve Electrode Based on Liquid Crystal Polymer and Polynorbornene Multilayered Structures. Neural Eng. 2007. CNE '07. 3rd Int. IEEE/EMBS Conf., Kohala Coast, HI, 2007; p 32.
- 29
Keesara, V. V.;
Durand, D. M.;
Zorman, C. A. Fabrication and Characterization of Flexible.; Microfabricated Neural Electrode Arrays Made from Liquid Crystal Polymer and Polynorbornene. MRS Proc 2006, 926, 0926–CC06–04.
10.1557/PROC-0926-CC06-04 Google Scholar
- 30 Hess, A.; Sabens, D. M.; Martin, H. B.; Zorman, C. A. Polycrystalline Diamond-on-Polymer Microelectrode Arrays for Mechanically-Flexible Neural Interfacing. Hilt Head Work 2010 A Solid-State Sensors, Actuators Microsystems Workshop, 2010.
- 31 Hess, A. E.; Sabens, D. M.; Martin, H. B.; Zorman, C. A. J. Microelectromech. Syst. 2011, 20, 867.
- 32 Hess, A. E.; Sabens, D. M.; Martin, H. B.; Zorman, C. A. Electrochem. Solid State Lett. 2010, 13, J129.
- 33 Reed, H. A.; White, C. E.; Rao, V.; Allen, S. A. B.; Henderson, C. L.; Kohl, P. A. J. Micromech. Microeng. 2001, 11, 733.
- 34 King, C. R.; Sekar, D.; Bakir, M. S.; Dang, B.; Pikarsky, J.; Meindl, J.D. 3D stacking of chips with electrical and microfluidic I/O interconnects. 2008 58th Electron Components Technol Conference, 2008, 1.
- 35 White, C. E.; Anderson, T.; Henderson, C. L.; Rowland, H. D.; King, W. P. Proc. SPIE Emerg. Lithogr. Technol. VIII 2004, 5374, 361.
- 36 Sekar, D.; King, C.; Dang, B.; Spencer, T.; Thacker, H.; Joseph, P.; Bakir, M.; Meindl, J. 2008 Int. Interconnect. Technol. Conf. 2008, 13.
- 37 Duffy, D. C.; McDonald, J. C.; Schueller, O. J.; Anal. Chem. 1998, 70, 4974.
- 38 Smith, R. L. Oxygen Plasma Surface Activation Of Polynorbornene For Bonding To Glass With Applications To Microfluidic Systems. MS Thesis, Case Western Reserve University, Cleveland, Ohio USA, May 2011.
- 39 Hukins, D. W. L.; Mahomed, A.; Kukureka, S. N. Med. Eng. Phys. 2008, 30, 1270.
- 40 Borschel, G. H.; Kia, K. F.; Kuzon, W. M. J. Surg. Res. 2003, 114, 133.
- 41 Hess, A. E.; Capadona, J. R.; Shanmuganathan, K.; Hsu, L.; Rowan, S. J.; Weder, C.; Tyler, D. J.; Zorman, C. A. J. Micromech. Microeng. 2011, 21, 54009.
- 42 Hess, A. E.; Potter, K. A.; Tyler, D. J.; Zorman, C. A.; Jeffrey, R. C. J. Vis. Exp. 2013, 78, doi: 10.3791/50078.
- 43 Hemker, K. J.; Sharpe, W. N. Annu. Rev. Mater. Res. 2007, 37, 93.
- 44 Metz, S.; Bertsch, A.; Renaud, P. J. Microelectromech. Syst. 2005, 14, 383.
- 45 Halpern, J. M.; Xie, S.; Sutton, G. P.; Higashikubo, B. T.; Chestek, C. A.; Lu, H.; Chiel, H. J.; Martin, H. B. Diam. Relat. Mater. 2006, 15, 183.
- 46 Lu, H.; Chestek, C. A.; Shaw, K. M.; Chiel, H. J. J. Neural Eng. 2008, 5, 287.