Effect of surface acetylated-chitin nanocrystals on structure and mechanical properties of poly(lactic acid)
Qiaoxin Zhang
School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070 China
Search for more papers by this authorSiwen Wei
School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070 China
Search for more papers by this authorCorresponding Author
Jin Huang
College of Chemical Engineering, Wuhan University of Technology, Wuhan, 430070 China
State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640 China
Correspondence to: J. Huang (E-mail: [email protected]) or P. R. Chang (E-mail: [email protected])Search for more papers by this authorJiwen Feng
State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071 China
Search for more papers by this authorCorresponding Author
Peter R. Chang
BioProducts and Bioprocesses National Science Program, Agriculture and Agri-Food Canada, Saskatoon, SK, S7N 0X2 Canada
Correspondence to: J. Huang (E-mail: [email protected]) or P. R. Chang (E-mail: [email protected])Search for more papers by this authorQiaoxin Zhang
School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070 China
Search for more papers by this authorSiwen Wei
School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070 China
Search for more papers by this authorCorresponding Author
Jin Huang
College of Chemical Engineering, Wuhan University of Technology, Wuhan, 430070 China
State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640 China
Correspondence to: J. Huang (E-mail: [email protected]) or P. R. Chang (E-mail: [email protected])Search for more papers by this authorJiwen Feng
State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071 China
Search for more papers by this authorCorresponding Author
Peter R. Chang
BioProducts and Bioprocesses National Science Program, Agriculture and Agri-Food Canada, Saskatoon, SK, S7N 0X2 Canada
Correspondence to: J. Huang (E-mail: [email protected]) or P. R. Chang (E-mail: [email protected])Search for more papers by this authorABSTRACT
In this work, the miscibility between chitin nanocrystals (ChNs) and poly(lactic acid) (PLA) was expected to be improved by surface acetylation of ChN. The reaction of acetic anhydride onto the ChN surface was confirmed by FTIR and 13C NMR, while XRD and TEM proved the crystalline structure and rod-like morphology were maintained. The acetylated ChN (AChN) was incorporated into a PLA matrix by solution blending, and resulted in an increase of tensile strength and Young's modulus and they reached to the maximum value as 45 and 37% higher than neat PLA film, respectively, with the loading level of AChN reaching to 4 wt %. The enhancement could be attributed to that acetylation improved dispersion of AChN in the PLA matrix and interfacial adhesion between AChN and PLA. The performances of the nanocomposites based on PLA and chitin nanocrystals derived from renewable resources have good potential for industrial applications. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 39809.
REFERENCES
- 1Fortunati, E.; Armentano, I.; Zhou, Q.; Puglia, D.; Terenzi, A.; Berglund, L. A.; Kenny, J. M. Polym. Degrad. Stab. 2012, 97, 2027.
- 2Bulota, M.; Kreitsmann, K.; Hughes, M.; Paltakari, J. J. Appl. Polym. Sci. 2012, 126, E449.
- 3Frone, A. N.; Berlioz, S.; Chailan, J.-F.; Panaitescu, D. M.; Donescu, D. Polym. Compos. 2011, 32, 976.
- 4Kose, R.; Kondo, T. J. Appl. Polym. Sci. 2013, 128, 1200.
- 5Kim, H. K.; Kim, S. J.; Lee, H. S.; Choi, J. H.; Jeong, C. M.; Sung, M. H.; Park, S.-H.; Park, H. J. J. Appl. Polym. Sci. 2013, 127, 3823.
- 6Kale, G.; Auras, R.; Singh, S. P. J. Polym. Environ. 2006, 14, 317.
- 7Way, C.; Wu, D. Y.; Cram, D.; Dean, K.; Palombo, E. J. Polym. Environ. 2013, 21, 54.
- 8Schwach, E.; Six, J. L.; Avérous L. J. Polym. Environ. 2008, 16, 286.
- 9Pinto, A. M.; Moreira, S.; Goçalves, I. C.; Gama, F. M.; Mendes, A. M.; Magalhães, F. D. Colloid Surface B. 2013, 104, 229.
- 10Quero, F.; Eichhorn, S. J.; Nogi, M.; Yano, H.; Lee, K.-Y.; Bismarck, A. J. Polym. Environ. 2012, 20, 916.
- 11Martínez-Sanz, M.; Lopez-Rubio, A.; Lagaron, J. M. Biomacromolecules 2012, 13, 3887.
- 12Habibi, Y.; Lucia, L. A.; Rojas, O. J. Chem. Rev. 2010, 110, 3479.
- 13Lin, N.; Chen, G.; Huang, J.; Dufresne, A.; Chang, P. R. J. Appl. Polym. Sci. 2009, 113, 3417.
- 14Zhang, X.; Huang, J.; Chang, P. R.; Li, J.; Chen, Y.; Wang, D.; Yu, J.; Chen, J. Polymer 2010, 51, 4398.
- 15Sanchez-Garcia, M.; Lagaron, J. Cellulose. 2010, 17, 987.
- 16Okubo, K.; Fujii, T.; Thostenson, E. T. Compos. A Appl. S. 2009, 40, 469.
- 17Fox, D. M.; Lee, J.; Citro, C. J.; Novy, M. Polym. Degrad. Stab. 2013, 98, 590.
- 18Frone, A. N.; Berlioz, S.; Chailan, J.-F.; Panaitescu, D. M. Carbohydr. Polym. 2013, 91, 377.
- 19Ifuku, S.; Nogi, M.; Abe, K.; Handa, K.; Nakatsubo, F.; Yano, H. Biomacromolecules 2007, 8, 1973.
- 20Gattin, R.; Copinet, A.; Bertrand, C.; Couturier, Y. Int. Biodeterior. Biodegrad. 2002, 50, 25.
- 21Xue, P.; Wang, K.; Jia, M.; Yang, M. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2013, 28, 157.
- 22Phetwarotai, W.; Potiyaraj, P.; Aht-Ong, D. J. Appl. Polym. Sci. 2012, 126, E162.
- 23Martin, O.; Avérous, L. Polymer 2001, 42, 6209.
- 24Le Bolay, N.; Lamure, A.; Leis, N. G.; Subhani, A. Chem. Eng. Process. 2012, 56, 1.
- 25Azizi Samir, M. A. S.; Alloin, F.; Dufresne, A. Biomacromolecules 2005, 6, 612.
- 26Azizi Samir, M. A. S.; Chazeau, L.; Alloin, F.; Cavaillé, J.-Y.; Dufresne, A.; Sanchez, J.-Y. Electrochim. Acta. 2005, 50, 3897.
- 27Lin, N.; Huang, J.; Chang, P. R.; Feng, J.; Yu, J. Carbohydr. Polym. 2011, 83, 1834.
- 28Jonoobi, M.; Mathew, A. P.; Abdi, M. M.; Makinejad, M. D.; Oksman, K. J. Polym. Environ. 2012, 20, 991.
- 29Tome, L. C.; Pinto, R. J. B.; Trovatti, E.; Freire, C. S. R.; Silvestre, A. J. D.; Neto, C. P.; Gandini, A. Green Chem. 2011, 13, 419.
- 30Mine, S.; Izawa, H.; Kaneko, Y.; Kadokawa, J.-I. Carbohydr. Res. 2009, 344, 2263.
- 31Muzzarelli, R. A. A. Chitin; Pergamon Press: Oxford, 1977; p 220.
- 32Muzzarelli, R. A. A.; Jeuniaux, C.; Gooday, G. W. Chitin in Nature and Technology; Plenum Press: New York, 1986; p 254.
10.1007/978-1-4613-2167-5 Google Scholar
- 33Zeng, J. B.; He, Y. S.; Li, S. L.; Wang, Y. H. Biomacromolecules. 2012, 13, 1.
- 34Nair, K. G.; Dufresne, A. Biomacromolecules. 2003, 4, 657.
- 35Minke, R.; Blackwell, J. J. Mol. Biol. 1978, 120, 167.
- 36Uddin, A. J.; Fujie, M.; Sembo, S.; Gotoh, Y. Carbohydr. Polym. 2012, 87, 799.
- 37Ji, Y.-L.; Wolfe, P. S.; Rodriguez, I. A.; Bowlin, G. L. Carbohydr. Polym. 2012, 87, 2313.
- 38Kadokawa, J.-I.; Takegawa, A.; Mine, S.; Prasad, K. Carbohydr. Polym. 2011, 84, 1408.
- 39Chang, P. R.; Jian, R. J.; Yu, J. G.; Ma, X. F. Carbohydr. Polym. 2010, 80, 420.
- 40Huang, J.; Zou, J. W.; Chang, P. R.; Yu, J. H.; Dufresne, A. eXPRESS Polym. Lett. 2011, 5, 362.
- 41Martin, O.; Averous, L. Polymer 2001, 42, 6209.
Citing Literature
January 15, 2014