Prediction of styrene conversion of polystyrene/natural rubber graft copolymerization using reaction conditions: Central composite design versus artificial neural networks
Kittima Aroonsingkarat
Center of Excellence for Petroleum, Petrochemicals and Advanced Materials, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok, Thailand
Search for more papers by this authorCorresponding Author
Nanthiya Hansupalak
Center of Excellence for Petroleum, Petrochemicals and Advanced Materials, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok, Thailand
Center of Excellence for Petroleum, Petrochemicals and Advanced Materials, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok, Thailand===Search for more papers by this authorKittima Aroonsingkarat
Center of Excellence for Petroleum, Petrochemicals and Advanced Materials, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok, Thailand
Search for more papers by this authorCorresponding Author
Nanthiya Hansupalak
Center of Excellence for Petroleum, Petrochemicals and Advanced Materials, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok, Thailand
Center of Excellence for Petroleum, Petrochemicals and Advanced Materials, Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok, Thailand===Search for more papers by this authorAbstract
Gross copolymer or the total product of graft copolymerization of polystyrene (PS) and rubber, prepared via emulsion polymerization using a redox initiator, is used to investigate the utilization of central composite design and artificial neural network (ANN) approaches in correlating the graft copolymerization conditions to the monomer conversion. The conditions were manipulated by changing four factors: reaction temperature and time, percentage of deproteinized natural rubber (DPNR) in the rubber mixture also containing NR, and amount of chain transfer agent. For DPNR preparation, the incorporation of ultrasound energy into a deproteinizing method (i.e., urea treatment) was preexamined. A shorter reaction time, a lower total nitrogen content, and no agglomeration of rubber particles suggest the success of the incorporation. Results exhibit that the relationship between those factors and the response can be better described by the ANN model, which is further proved to be an excellent tool for the prediction of the conversion at other reaction conditions. In addition, the thermal behavior of gross copolymer is similar to its parents, the rubber and neat PS, but more to the former owing to the larger amount of rubber component. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013
REFERENCES
- 1 Gazeley, K. F.; Gorton, A. D. T.; Pendle, T. D. In Natural Rubber Science and Technology, A. D. Roberts, Ed., Oxford University Press: New York, 1990.
- 2 Juntuek, P.; Ruksakulpiwat, C.; Chumsamrong, P.; Ruksakulpiwat, Y. J. Appl. Polym. Sci. 2011, 122, 3152.
- 3
Manson, J. A.;
Sperling, L. H. In
Polymer Blends and Composites;
Plenum Press:
New York,
1976.
10.1007/978-1-4615-1761-0 Google Scholar
- 4 Hashim, A. S.; Ong, S. K. Polym. Int. 2002, 51, 611.
- 5 Datta, S.; Lohse, D. J. Polymeric Compatibilizers: Uses and Benefits in Polymer Blends; Hanser Gardner Publications: Cincinnati, 1996.
- 6 Fayt, R.; Jérôme, R.; Teyssié, P. J. Polym. Sci. Part. B: Polym. Phys. 1982, 20, 2209.
- 7 Wirachakul, W. Grafting efficiency and mechanical properties of styrene grafted natural rubber copolymer produced from emulsion copolymerization. M. S. Thesis; Kasetsart University: Thailand, 2011.
- 8 Arayapranee, W.; Prasassarakich, P.; Rempel, G. L. J. Appl. Polym. Sci. 2003, 89, 63.
- 9 Arayapranee, W.; Rempel, G. L. J. Appl. Polym. Sci. 2004, 93, 455.
- 10 Arayapranee, W.; Prasassarakich, P.; Rempel, G. L. J. Appl. Polym. Sci. 2006, 100, 2867.
- 11 Taghizadeh, M. T.; Ghaffari, S. Iranian Int. J. Sci. 2003, 4, 23.
- 12 Helmiyati, E.; Priyono, W.; Yulizar, Y. J. Phys. Sci. 2010, 21, 39.
- 13 Songsing, K.; Hansupalak, N., Eur. Polym. J., submitted.
- 14 Dhib, R.; Hyson, W. Polym. React. Eng. 2002, 10, 101.
- 15 Delfa, G. M.; Olivieri, A.; Boschetti, C. E. Comput. Chem. Eng. 2009, 33, 850.
- 16 Hanai, T.; Ohki, T.; Honda, H.; Kobayashi, T. Comput. Chem. Eng. 2003, 27, 1011.
- 17 Mishra, S.; Singh, J.; Choudhary, V. J. Appl. Polym. Sci. 2009, 113, 3742.
- 18 Mao, X.; Shen, Y.; Yang, L.; Chen, S.; Yang, Y.; Yang, J.; Zhu, H.; Deng, Z.; Wei, D. Process Biochem. 2007, 42, 878.
- 19 Rodríguez-Nogalesa, J. M.; Ortegab, N.; Perez-Mateosb, M.; Busto, M. D. Food Chem. 2007, 101, 634.
- 20 Xiao, G.; Zhu, Z. Tribol. Int. 2010, 43, 218.
- 21 Bezerra, M. A.; Santelli, R. E.; Oliveira, E. P.; Villar, L. S.; Escaleira, L. A. Talanta 2008, 76, 965.
- 22 Srivastava, D. J. Polym. Eng. 2002, 22, 457.
- 23 Nasef, M. M.; Aly, A. A.; Saidi, H.; Ahmad, A. Radiat. Phys. Chem. 2011, 80, 1222.
- 24 Banerjee, S.; Joshi, M.; Ghosh, A. K. J. Appl. Polym. Sci. 2012, 123, 2042.
- 25 Agung, E. H.; Sapuan, S. M.; Hamdan, M. M.; Zaman, H. M. D. K.; Mustofa, U. Polym. Polym. Compos. 2011, 19, 697.
- 26 Feng, C.- X. J.; Yu, Z.- G. S.; Kusiak, A. IIE Trans. 2006, 38, 13.
- 27 Nampitch, T.; Buakaew, P. Kasetsart J. (Nat. Sci.) 2006, 40, 1.
- 28 Nakason, C.; Kaesaman, A.; Yimwan, N. J. Appl. Polym. Sci. 2003, 87, 68.
- 29 Pukkate, N.; Yamamoto, Y.; Kawahara, S. Colloid Polym. Sci. 2008, 286, 411.
- 30 Kovuttikulrangsie, S.; Sahakaro, K.; Intarakong, C. Klinpituksa, P. J. Appl. Polym. Sci. 2004, 93, 833.
- 31 Man, S. H. C.; Hashim, A. S.; Akil, H. M. J. Appl. Polym. Sci. 2008, 109, 9.
- 32 Pukkate, N.; Kitai, T.; Yamamoto, Y.; Kawazura, T.; Sakdapipanich, J.; Kawahara, S. Eur. Polym. J. 2007, 43, 3208.
- 33 Suslick, K. S.; Hammerton, D. A.; Cline, R. E. J. Am. Chem. Soc. 1986, 108, 5641.
- 34 Kondo, T.; Fukushima, Y.; Kon, H.; Riesz, P. Arch. Biochem. Biophys. 1989, 269, 381.
- 35 Tian, Z. M.; Wan, M. X.; Wang, S. P.; Kang, J. Q. Ultrason. Sonochem. 2004, 11, 399.
- 36 Mizukoshi, Y.; Nakamura, H.; Bandow, H.; Maeda, Y.; Nagata, Y. Ultrason. Sonochem. 1999, 6, 203.
- 37 Trebar, M.; Susteric, Z.; Lotric, U. Polymer 2007, 48, 5340.
- 38 Vijayabaskar, V.; Gupta, R.; Chakrabarti, P. P.; Bhowmick, A. K. J. Appl. Polym. Sci. 2006, 100, 2227.
- 39 Negro, C.; Alonso, Á.; Blanco, Á.; Tijero, J. Ind. Eng. Chem. Res. 2006, 45, 197.
- 40 Sakdapipanich, J. T. J. Biosci. Bioeng. 2007, 103, 287.
- 41 Eng, A. H.; Tangpakdee, J.; Kawahara, S.; Tanaka, Y. J. Rubber Res. 1997, 12, 11.
- 42 Naumann, D.; Labischinski, H.; Rönspeck, W.; Barnickel, G.; Bradaczek, H. Biopolymers 1987, 26, 795.
- 43 Ott, H.; Schröder, C.; Raulf-Heimsoth, M.; Mahler, V.; Ocklenburg, C.; Merk, H. F.; Baron, J. M. J. Investig. Allergol. Clin. Immunol. 2010, 20, 129.
- 44 Gaspari, A. A.; Thatcher, T.; Burns, R. P.; Ferbel, B.; Tanck, C.; Bedi, G. S.; Perrella, F. W. Clin. Immunol. 2002, 105, 9.
- 45
Berthouex, P. M.;
Brown, L. C.
Statistics for Environmental Engineers;
Lewis Publishers:
New York,
2002.
10.1201/9780367802691 Google Scholar
- 46 Sresungsuwan, N.; Hansupalak, N. J. Appl. Polym. Sci. doi: 10.1002/app.37550.
- 47 Mathew, A. P.; Packirisamy, S.; Thomas, S. Polym. Degrad. Stab. 2001, 72, 423.
- 48 Kongparakul, S.; Prasassarakich, P.; Rempel, G. L. Eur. Polym. J. 2009, 45, 2358.
- 49 Fernández-Berridi, M. J.; González, N.; Mugica, A.; Bernicot, C. Thermochim. Acta. 2006, 444, 65.