Nanocomposites based on aromatic polyesters and organically modified clay
Corresponding Author
G. Engelmann
Fraunhofer – Institute for Applied Polymer Research, Geiselbergstraße 69, Potsdam-Golm 14476, Germany
Fraunhofer – Institute for Applied Polymer Research, Geiselbergstraße 69, Potsdam-Golm 14476, Germany===Search for more papers by this authorE. Bonatz
Fraunhofer – Institute for Applied Polymer Research, Geiselbergstraße 69, Potsdam-Golm 14476, Germany
Search for more papers by this authorJ. Ganster
Fraunhofer – Institute for Applied Polymer Research, Geiselbergstraße 69, Potsdam-Golm 14476, Germany
Search for more papers by this authorCorresponding Author
G. Engelmann
Fraunhofer – Institute for Applied Polymer Research, Geiselbergstraße 69, Potsdam-Golm 14476, Germany
Fraunhofer – Institute for Applied Polymer Research, Geiselbergstraße 69, Potsdam-Golm 14476, Germany===Search for more papers by this authorE. Bonatz
Fraunhofer – Institute for Applied Polymer Research, Geiselbergstraße 69, Potsdam-Golm 14476, Germany
Search for more papers by this authorJ. Ganster
Fraunhofer – Institute for Applied Polymer Research, Geiselbergstraße 69, Potsdam-Golm 14476, Germany
Search for more papers by this authorAbstract
Milled polybutylene terephthalate (PBT) and polytrimethylene terephthalate (PTT) were mixed with organically modified clay and extruded to prepare nanocomposites by melt intercalation. The modifier of the nanofiller belongs to the group of trialkylbenzylammonium cations. Manufacturing of the materials was carried out with a co-rotating twin-screw-extruder at 230°C and 240°C for PTT and PBT, respectively. A concentration of 3% of the inorganic filler component in the composites was aimed at. The influence of mechanical stress during extrusion on the stability of the neat polymers was tested at different speeds of rotation between 100 rpm and 800 rpm. The composites were characterized with regard to the experimental filler content and the properties of the matrix polymers like melt and crystallization temperatures, degrees of crystallinity, intrinsic viscosities, and melt viscosities. Additionally, mechanical properties were analyzed by tensile tests and discussed in terms of processing and the filler presence. The dominance of PBT as polymer matrix was highlighted. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013
REFERENCES
- 1 Cheng-Fang, O. J. Polym. Sci. Part B: Polym. Phys. 2003, 41, 2902.
- 2 Cheng-Fang, O. J. Appl. Polym. Sci. 2003, 89, 3315.
- 3 Chang, J.-H.; Mun, M. K.; Kim, J.-Ch. J. Appl. Polym. Sci. 2006, 102, 4535.
- 4 Kim, K. J.; Ramasundaram, S.; Lee, J. S. Polym. Compos. 2008, 29, 894.
- 5 Cho, H. W.; Lee, J. S.; Prabu, A. A.; Kim, K. J. Polym. Compos. 2008, 29, 1328.
- 6 Russo, G. M.; Simon, G. P.; Incarnato, L. Macromolecules 2006, 39, 3855.
- 7 Kim, J. Y.; Han, S. I.; Hong, S. Polymer 2008, 49, 3335.
- 8 Kim, N. H.; Malhotra, S. V.; Xanthos, M. Microporous Mesoporous Mater. 2006, 96, 29.
- 9 Vaia, R. A.; Teukolsky, R. K.; Giannelis, E. P. Chem. Mater. 1994, 6, 1017.
- 10 Gurmendi, U.; Eguiazabal, J. I.; Nazabal, J. Eur. Polym. J. 2008, 44, 1686.
- 11 Zhu, J.; Morgan, A. B.; Lamelas, F. J.; Wilkie, C. A. Chem. Mater. 2001, 13, 3774.
- 12 Gilman, J. W.; Awad, W. H.; Davis, R. D.; Shields, J.; Harris, R. H., Jr.; Davis, C.; Morgan, A. B.; Sutto, T. E.; Callahan, J.; Trulove, P. C.; DeLong, H. C. Chem. Mater. 2002, 14, 3776.
- 13 Fornes, T. D.; Yoon, P. J.; Hunter, D. L.; Keskkula, H.; Paul, D. R. Polymer 2002, 43, 5915.
- 14 Stoeffler, K.; Lafleur, P. G.; Denault, J. Polym. Degrad. Stab. 2008, 93, 1332.
- 15 Ray, S. S.; Okamoto, M. Prog. Polym. Sci. 2003, 28, 1539.
- 16 Ray, S. S.; Bousmina, M. Prog. Mater Sci. 2005, 50, 962.
- 17 Maiti, P.; Batt, C. A.; Giannelis, E. P. Polym. Mater. Sci. Eng. 2003, 88, 58.
- 18 Park, H. M.; Li, X.; Chang-Zhu, J.; Park, C. Y.; Cho, W. J.; Ha, C. K. Macromol. Mater. Eng. 2002, 287, 553.
- 19 Ray, S. S.; Okamoto, K.; Yamada, K.; Okamoto, M. Nano Lett. 2002, 2, 423.
- 20 Kato, M.; Usuki, A.; Okada, A. J. Appl. Polym. Sci. 1997, 66, 1781.
- 21 Rong, J.; Jing, J.; Li, H.; Sheng, M. A. Macromol. Rapid Commun. 2001, 22, 329.
- 22 Wang, Z.; Pinnavaia, T. J. Chem. Mater. 1998, 10, 3769.
- 23 Huang, X.; Lewis, S.; Brittain, W. J.; Vaia, R. A. Macromolecules 2000, 33, 2000.
- 24 Bourbigot, S.; Vanderhart, D. L.; Gilman, J. W.; Awad, W. H.; Davis, R. D.; Morgan, A. B.; Wilkie, C. A. J. Polym. Sci. Part B: Polym. Phys. 2003, 41, 3188.
- 25 Kojima, Y.; Usuki, A.; Kawasumi, M.; Fukushima, Y.; Okada, A.; Kurauchi, T.; Kamigaito, O. J. Mater. Res. 1993, 8, 1179.
- 26 Hasegawa, N.; Okamoto, H.; Kato, M.; Usuki, A.; Sato, N. Polymer 2003, 44, 2933.
- 27 Chang, J.-H.; Kim, S. J.; Im, S. Polymer 2004, 45, 5171.
- 28 Wu, D.; Zhou, Ch.; Zhang, M. J. Appl. Polym. Sci. 2006, 102, 3628.
- 29 Zhanga, G.; Shichia, T.; Takagi, K. Mater. Lett. 2003, 57, 1858.
- 30 Glenz, W. Kunststoffe 2007, 10, 76.
- 31 Wijayathunga, V. N.; Lawrence, C. A.; Blackburn, R. S.; Bandara, M. P. U.; Lewis, E. L. V.; El-Dessouky, H. M.; Cheung, V. Opt. Laser Technol. 2007, 39, 1301.
- 32 Eipper, A. Kunststsoffe 2007, 10, 120.
- 33 Chuah, H. H. Paper presented at Tifcon '96, The Textile Institute, Blackpool, UK, Nov. 6, 1996.
- 34 Kurian, J. V. J. Polym. Environ. 2005, 13, 159.
- 35 Kim, T.-K.; Son, Y.-A.; Lim, Y.-J. Dyes Pigm. 2005, 67, 229.
- 36 Run, M.; Yao, Ch.; Wang, Y.; Gao, J. J. Appl. Polym. Sci. 2007, 106, 1557.
- 37 Hu, X.; Lesser, A. J. J. Polym. Sci. Part B: Polym. Phys. 2003, 41, 2275.
- 38 Liu, Z.; Kequan Chen, K.; Yan, D. Eur. Polym. J. 2003, 39, 2359.
- 39 Liu, Z.; Chen, K.; Yan, D. Polym. Test. 2004, 23, 323.
- 40 Drown, E. K.; Mohanty, A. K.; Parulekar, Y.; Hasija, D.; Harte, B. R.; Misra, M.; Kurian, J. V. Compos. Sci. Technol. 2007, 67, 3168.
- 41 Carroccio, S.; Rizzarelli, P.; Scaltro, G.; Puglisi, C. Polymer 2008, 49, 3371.
- 42 Pyda, M.; Boller, A.; Grebowicz, J.; Chuah, H.; Lebedev, B. V.; Wunderlich, B. J. Polym. Sci. Part B: Polym. Phys. 1998, 36, 2499.
- 43 Cheng, S. Z. D.; Pan, R.; Wunderlich, B. Macromol. Chem. 1988, 189, 2443.
- 44 Liu, Y. Macromol. Mater. Eng. 2001, 286, 611.
- 45 Xie, W.; Gao, Z.; Liu, K.; Pan, W.-P.; Vaia, R.; Hunter, D.; Singh, A. Thermochim. Acta 2001, 367–368, 339.
- 46 Cervantes-Uc, J. M.; Cauich-Rodriguez, J. V.; V'azquez-Torres, H.; Garfias-Mesias, L. F.; Donald, R.; Paul, D. R. Thermochim. Acta 2007, 457, 92.
- 47 Haskins, N. J.; Mitchell, R. Analyst 1991, 116, 901.
- 48 Buxbaum, L. H. Angew. Chem. Int. Ed. 1968, 7, 182.
- 49 Chuah, H. H. Polym. Eng. Sci. 2001, 41, 308.
- 50 Brunelle, D. J. In Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters; J. Scheirs, T. E. Long, Eds.; Wiley: New York, 2003.
- 51 Righetti, M. C.; Di Lorenzo, M. L. J. Polym. Sci. Part B: Polym. Phys. 2004, 42, 2191.
- 52 Mohd Ishak, Z. A.; Gatos, K. G.; Karger-Kocsis, J. J. Polym. Eng. Sci. 2006, 46, 743.
- 53 Cho, H. W.; Lee, J. S.; Prabu, A. A.; Kim, K. J. Polym. Compos. 2008, 29, 1329.
- 54 Chen, X.; Hou, G.; Chen, Y.; Yang, K.; Dong, Y.; Zhou, H. Polym. Test. 2007, 26, 144.
- 55 Kim, S. H.; Kim, J. H. Fibers Polymers 2010, 11, 170.