Study of morphological and mechanical performance of amine-cured glassy epoxy–clay nanocomposites
Corresponding Author
A. Mouloud
Polytechnic Military School, B.P 17, EMP, Bordj-El-Bahri, 16111 Algiers, Algeria
Polytechnic Military School, B.P 17, EMP, Bordj-El-Bahri, 16111 Algiers, Algeria===Search for more papers by this authorR. Cherif
Polytechnic Military School, B.P 17, EMP, Bordj-El-Bahri, 16111 Algiers, Algeria
Search for more papers by this authorS. Fellahi
Plastics and Rubber Engineering Department, Algerian Petroleum Institute, 35000 Boumerdes, Algeria
Search for more papers by this authorY. Grohens
Materials Engineering Laboratory of Bretagne, Research Centre, Rue de Saint Maudé, 56321 Lorient, France
Search for more papers by this authorI. Pillin
Materials Engineering Laboratory of Bretagne, Research Centre, Rue de Saint Maudé, 56321 Lorient, France
Search for more papers by this authorCorresponding Author
A. Mouloud
Polytechnic Military School, B.P 17, EMP, Bordj-El-Bahri, 16111 Algiers, Algeria
Polytechnic Military School, B.P 17, EMP, Bordj-El-Bahri, 16111 Algiers, Algeria===Search for more papers by this authorR. Cherif
Polytechnic Military School, B.P 17, EMP, Bordj-El-Bahri, 16111 Algiers, Algeria
Search for more papers by this authorS. Fellahi
Plastics and Rubber Engineering Department, Algerian Petroleum Institute, 35000 Boumerdes, Algeria
Search for more papers by this authorY. Grohens
Materials Engineering Laboratory of Bretagne, Research Centre, Rue de Saint Maudé, 56321 Lorient, France
Search for more papers by this authorI. Pillin
Materials Engineering Laboratory of Bretagne, Research Centre, Rue de Saint Maudé, 56321 Lorient, France
Search for more papers by this authorAbstract
The effect of three different alkylammonium-modified montmorillonite on morphological and mechanical properties of glassy epoxy-amine nanocomposites is reported. Small amounts of clays <10 phr (part per hundred of resin) were used in each system of nanocomposite. The morphology of the prepared nanocomposites was performed by means of X-ray diffraction and transmission electron microscopy. Differential scanning calorimetry (DSC) was used to investigate the glass transition temperatures (Tg). Mechanical properties were based on tensile characteristics (Young's modulus), impact strength, and fracture toughness. The measured moduli were compared to theoretical predictions. Scanning electron microscopy was used to study the morphological structure of the fracture surfaces of impacted specimens. It was found that at a low content of 2 phr (1.2 wt %) of nanoclays, the impact strength and the fracture toughness were improved by 77 and 90% respectively, comparatively to the neat epoxy, whereas DSC revealed a reduction of the Tg of nanocomposites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011
References
- 1 Sudhakara, P.; Kannan, P.; Obireddy, K.; Varada Rajulu, A. J Mater Sci 2011, 46, 2778.
- 2 Zainuddin, S.; Hosur, M. V.; Zhou, Y.; Narteh, A T.; Kumar, A.; Jeelani, S. Mater Sci Eng A 2010, 527, 7920.
- 3 Gârea, S.-A.; Iovu, H.; Voicu, G. Appl Clay Sci 2010, 50, 469.
- 4 Lim, S. R.; Chow, W. S. Polym-Plast Technol Eng 2011, 50, 2, 182.
- 5 Korobko, A. P.; Krasheninnikov, S. V.; Levakova, I. V.; Drozd, S. N.; Chvalun, S. N.; Nikolaev, V. V.; Shcherbina, M. A.; Cherdyntseva, S. V. Polym Sci Ser A 2011, 53, 75.
- 6 Choi, Y. Y.; Lee, S. H.; Ryu, S. H. Polym Bull 2009, 63, 47.
- 7 Gârea, S.-A.; Nicolescu, A.; Deleanu, C.; Iovu, H. Int J Polym Anal Char 2010, 15, 497.
- 8 Zaarei, D.; Sarabi, A. A.; Sharif, F.; Gudarzi, M. M.; Kassiriha, S. M. J Dispersion Sci Technol 2010, 31, 1350.
- 9 Lan, T.; Pinnavaia, T. J. Chem Mater 1994, 6, 2216.
- 10 Lan, T.; Kaviratna, P. D.; Pinnavaia, T. J. Chem Mater 1995, 7, 2144.
- 11 Wang, Z.; Pinnavaia, T. J. Chem Mater 1998, 10, 1820.
- 12 Messersmith, P. B.; Giannelis, E. P. Chem Mater 1994, 6, 1719.
- 13 Tolle, T. B.; Anderson, D. P. Compos Sci Technol 2002, 62, 1033.
- 14 Kornmann, X.; Lindberg, H.; Berglund, L. A. Polymer 2001, 42, 1303.
- 15 Kornmann, X.; Lindberg, H.; Berglund, L. A. Polymer 2001, 42, 4493.
- 16 Kornmann, X.; Thomann, R.; Mulhaupt, R.; Finter, J.; Berglund, L. A. Polym Eng Sci 2002, 42, 1815.
- 17 Zerda, A. S.; Lesser, A. J. J Polym Sci: Part B 2001, 39, 1137.
- 18 Triantafillidis, C. S.; LeBaron, P. C.; Pinnavaia, T. J. J Solid State Chem 2002, 167, 354.
- 19 Becker, O.; Varley, R.; Simon, G. Polymer 2002, 43, 4365.
- 20 Becker, O.; Varley, R.; Simon, G. P. Eur Polym J 2004, 40, 187.
- 21 Pinnavaia, T. J.; Lan, T.; Wang, Z.; Shi, H.; Kaviratna, P. D. ACS Symp Ser Nanotechnol 1996, 622, 250.
- 22 Boukerrou, A.; Duchet, J.; Fellahi, S.; Kaci, M.; Sautereau, H. J Appl Polym Sci 2007, 103, 3547.
- 23 Manias, E.; Han, W. J.; Jandt, K. D.; Kramer, E. J.; Giannelis, E. P. Materials Research Society Symposium Proceeding, Issue: Nanophase and Nanocomposite Materials II, Boston, USA, 1997, 457, 495.
- 24
Zilg, C.;
Mulhaupt, R.;
Finter, J.
Macromol Chem Phys
1999,
200,
661.
10.1002/(SICI)1521-3935(19990301)200:3<661::AID-MACP661>3.0.CO;2-4 CAS Web of Science® Google Scholar
- 25 Massam, J.; Pinnavaia, T. J. Mat Res Soc Symp Proc 1998, 520, 223.
- 26 Liu, W.; Hoa, S. V.; Pugh, M. ICCM-14, San Diego, California, USA; 2003, p 14.
- 27 Guzman de Villoria, R.; Miravete, A. Acta Mater 2007, 55, 3025.
- 28 Miyagawa, H.; Rich, M. J.; Drzal, L. T. J Polym Sci Part B: Polym Phys 2004, 42, 4391.
- 29 Garrigue, J. Statique des solides élastiques en petites déformations, Ecole Supérieure de Mécanique de Marseille, Marseille, France, 2001.
- 30 Kinloch, A. J.; Taylor, A. C. J Mater Sci 2006, 41, 3271.
- 31 ASTM Standard D256-97. “Standard test methods for determining the izod pendulum impact resistance of plastics”, ASTM International, West Conshohocken, PA, 1997.
- 32 ASTM E 399 – 06∈2 “Standard test method for linear-elastic plane-strain fracture toughness KIC of metallic materials”, ASTM International, West Conshohocken, PA, 2008.
- 33 Yasmin, A.; Luo, J. J.; Abot, J. L.; Daniel, I. M. Compos Sci Technol 2006, 66, 2415.
- 34 Akbari, B.; Bagheri, R. Eur Polym J 2007, 43, 782.
- 35 McIntyre, S.; Kaltzakorta, I.; Liggat, J. J.; Pethrick, R.; Rhoney, A. I. Ind Eng Chem Res 2005, 44, 8573.
- 36 Wang, L.; Wang, K.; Chen, L.; Zhang, Y.; He, C. Compos Part A: Appl Sci Manufact 2006, 37, 1890.
- 37 Zilg, C.; Thomann, R.; Finter, J.; Mülhaupt, R. Macromol Mater Eng 2000, 280-281, 41.
- 38 Brown, J. M.; Curliss, D.; Vaia, R. A. Chem Mater 2000, 12, 3376.
- 39
Lee, A.;
Lichtenhan, J. D.
J Appl Polym Sci
1999,
73,
1993.
10.1002/(SICI)1097-4628(19990906)73:10<1993::AID-APP18>3.0.CO;2-Q CAS Web of Science® Google Scholar
- 40 Kelly, P.; Akelah, A.; Qutubuddin, S.; Moet, A. J Mater Sci 1994, 29, 2274.
- 41 Chen, K. H.; Yang, S. M. J Appl Polym Sci 2002, 86, 414.
- 42 Chen, J. S.; Poliks, M. D.; Ober, C. K.; Zhang, Y.; Wiesner, U.; Giannelis, E. P. Polymer 2002, 43, 4895.
- 43 Triantafillidis, C. S.; LeBaron, P.; Pinnavaia, T. J. Chem Mater 2002, 14, 4088.
- 44 Qi, B.; Zhang, Q. X.; Bannister, M.; Mai, Y. W. Compos Struct 2006, 75, 514.
- 45 Xidas, P. I.; Triantafyllidis, K. S. Eur Polym J 2010, 46, 404.
- 46 Basara, C.; Yilmazer, U.; Bayram, G. J Appl Polym Sci 2005, 98, 1081.
- 47 Yasmin, A.; Abot, J. L.; Daniel, I. M. Scripta Mater 2003, 49, 81.
- 48 Wei, C. L.; Zhang, M. Q.; Rong, M. Z.; Friedrich, K. Compos Sci Tech 2002, 62, 1327.
- 49 Liu, X.; Wu, Q. Polymer 2001, 42, 10013.
- 50 Wang, B.; Qi, N.; Gong, W.; Li, X. W.; Zhen, Y. P. Radiat Phys Chem 2007, 76, 146.
- 51 Mohan, T.; Kumar, M. R.; Velmurugan, R. J Mater Sci 2006, 41, 5915.
- 52 Ratna, D.; Manoj, N. R.; Varley, R.; Raman Singh, R. K.; Simon, G. P. Polym Int 2003, 52, 1403.
- 53 Velmurugan, R.; Mohan, T. P. J Mater Sci 2004, 39, 7333.
- 54 Kinloch, A. J.; Young, R. J. Fracture Behaviour of Polymers; Applied Science: London, 1983.
- 55 Fröhlich, J.; Golombowski, D.; Thomann, R.; Mülhaupt, R. Macromol Mater Eng 2004, 289, 13.
- 56 Kim, B. C.; Park, S. W.; Lee, D. G. Compos Struct 2008, 86, 69.
- 57 Barbero, E. J. Materials, Introduction to Composite Materials Design,Vol. 17; Taylor & Francis: New York, 1999.