Expandable styrene/methyl methacrylate copolymer: Synthesis and determination of VOCs by combined thermogravimetry/differential thermal analysis-gas chromatography/mass spectrometry
E. Haddadi
Technical Higher Education Center of Tabriz, Tabriz, Iran
Search for more papers by this authorE. Mehravar
Institute of Polymeric Materials, Sahand University of Technology, Tabriz, Iran
Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
Search for more papers by this authorCorresponding Author
F. Abbasi
Institute of Polymeric Materials, Sahand University of Technology, Tabriz, Iran
Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
Institute of Polymeric Materials, Sahand University of Technology, Tabriz, Iran===Search for more papers by this authorK. Jalili
Institute of Polymeric Materials, Sahand University of Technology, Tabriz, Iran
Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
Search for more papers by this authorE. Haddadi
Technical Higher Education Center of Tabriz, Tabriz, Iran
Search for more papers by this authorE. Mehravar
Institute of Polymeric Materials, Sahand University of Technology, Tabriz, Iran
Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
Search for more papers by this authorCorresponding Author
F. Abbasi
Institute of Polymeric Materials, Sahand University of Technology, Tabriz, Iran
Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
Institute of Polymeric Materials, Sahand University of Technology, Tabriz, Iran===Search for more papers by this authorK. Jalili
Institute of Polymeric Materials, Sahand University of Technology, Tabriz, Iran
Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
Search for more papers by this authorAbstract
Parts cast of metals using expandable polystyrene foams may have an unacceptable amount of surface defects, such as lustrous carbon. The use of foams made of styrenic/acrylic copolymers can improve the quality of foam molds and metal parts made using such molds. Lost foam copolymer was synthesized by suspension copolymerization of styrene and methyl methacrylate. The polymerization was carried out in the presence of blowing agents. The decomposition products of lost foam beads were studied by a method composed of the thermogravimetry/differential thermal analysis (TG/DTA) and gas chromatography/mass spectrometry (GC/MS). With these systems, the TG/DTA data can be combined with a GC separation and MS identification methods. This combined method improves the analysis of the decomposition products of lost foam beads and enables the precise identification of the amount and the nature of volatile organic compounds (VOCs) trapped during suspension polymerization. The results obtained from the combined method were verified for the nature and amount of VOCs with the results of time-conversion studies for copolymerization of monomers in the presence of different concentrations of blowing agent. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011
References
- 1 Scheirs, J.; Priddy, D. B. Modern Styrenic Polymers: Polystyrene and Styrenic Copolymers; Wiley: West Sussex, 2003.
- 2 Hahn, K.; Ehrmann, G.; Ruch, J.; Allmendinger, M.; Schmied, B.; Holoch, J.; Dietzen, F. J. U.S. Pat. 7,868,053 ( 2011).
- 3 Dietzen, F. J.; Ehrmann, G.; Schmied, B.; Laun, M.; Hahn, K.; Ruch, J.; Allmendinger, M.; Holoch, J.; Datko, A. U.S. Pat. 7,776,244 ( 2010).
- 4 Lee, J. H.; Bang, H. B.; Lee, H. R. U.S. Pat. 7,714,029 ( 2010).
- 5 Hahn, K.; Steinbrecher, H.; Naegele, D.; Loffler, A.; Gurtler, M.; Schmitt, H.; Reichert, J. U.S. Pat. 5,985,943 ( 1999).
- 6 Bullard, C. P. U.S. Pat. 5,858,288 ( 1999).
- 7 Wehtje, E. W.; Anderlind, E. T. U.S. Pat. 5,573,790 ( 1996).
- 8 Anderlind, E. T.; Wehtje, E. W. U.S. Pat. 5,267,845 ( 1993).
- 9 Arch, P. E.; Niemann, E. H. U.S. Pat. 4,840,759 ( 1989).
- 10 Bullard, C. P.; Szubelick, F. P. U.S. Pat. 4,813,859 ( 1989).
- 11 Schwarz, R. A. U.S. Pat. 4,448,900 ( 1984).
- 12 Doroudiani, S.; Omidian, H. Build Environ 2010, 45, 647.
- 13 Kumar, S.; Kumar, P.; Shan, H. S. J Mater Process Tech 2007, 182, 615.
- 14 Kannan, P.; Biernacki, J. J.; Visco, D. P., Jr. J Anal Appl Pyrol 2007, 78, 162.
- 15 Mirbagheri, S. M. H.; Varahram, N.; Davami, P. Numer Meth Eng 2003, 58, 723.
- 16 Piwonka, T. S. Mater Design 1990, 11, 283.
- 17 Jalili, K.; Abbasi, F.; Nasiri, M.; Ghasemi, M.; Haddadi, E. J Cell Plast 2009, 45, 197.
- 18 Mehravar, E. M.Sc. Thesis, Sahand University of Technology, Tabriz, Iran, 2010.
- 19 Tang, S.; Lu, G.; Han, X.; Hong, J. U.S. Pat. 6,770,681-B2 ( 2004).
- 20 Bishop, R. B. Practical Polymerization for Polystyrene; Cahners Books: Boston, 1971.
- 21 Horie, K.; Mita, I.; Kambe, H. J Polym Sci Part A: Polym Chem 1968, 6, 2663.
- 22 Eberhartinger, S.; Steiner, I.; Washüttl, J.; Kroyer, G.; Lebensm, Z. Unters Forsch 1990, 191, 286.
- 23 Kolb, B.; Ettre, L. S. Static Headspace-Gas Chromatography: Theory and Practice; Wiley-VCH: New York, 1997.
- 24 Kaljurand, M.; Smit, H. C. Chromatographia 1994, 39, 210.
- 25 Hodgson, S. C.; Casey, R. J.; Orbell, J. D.; Bigger, S. W. J Chem Educ 2000, 77, 1631.
- 26 Villberg, K.; Veijanen, A. Anal Chem 2001, 73, 971.
- 27 Panceram, P.; Pernak, P. LaborPraxis 1996, 20, 42.
- 28 Yamamoto, N.; Matsubasa, T.; Kumagai, N.; Mori, S.; Suzuki, K. Anal Chem 2002, 74, 484.
- 29 Kusch, P. Chem Anal 1996, 41, 241.
- 30 Kusch, P.; Knupp, G. CLB Chem Labor Biotech 2002, 53, M25.
- 31 Ezquerro, Ó.; Pons, B.; Tena, M. T. J Chromatogr A 2002, 963, 381.
- 32 Cai, L.; Xing, J.; Dong, L.; Wu, C. J Chromatogr A 2003, 1015, 11.
- 33 King, A. J.; Readman, J. W.; Zhou, J. L. Anal Chim Acta 2004, 523, 259.
- 34 Mazida, M. M.; Salleh, M. M.; Osman, H. J Food Comos Anal 2005, 18, 427.
- 36 Ruth, B.; Carmen, G. J.; Maria, L.; Rafael, C. J Chromatogr Sci 2006, 44, 430.
- 37 Turiel, E.; Tadeo, J. L.; Esteban, A. M. Anal Chem 2007, 79, 3099.
- 38 Styrishave, B.; Mortensen, M.; Krogh, P. H.; Andersen, O.; Jensen, J. Environ Sci Technol 2008, 42, 1332.
- 39 Qin, Z.; Bragg, L.; Ouyang, G.; Niri, V. H.; Pawliszyn, J. J Chromatogr A 2009, 1216, 6979.
- 40 Ishizaki, A.; Saito, K.; Hanioka, N.; Narimatsu, S.; Kataoka, H. J Chromatogr A 2010, 1217, 5555.
- 41 Gonçalves, M. L. A.; Teixeira, M. A. G.; Pereira, R. C. L.; Mercury, R. L. P.; Matos, J. R. J Therm Anal Calorim 2001, 64, 697.
- 42 Balke, S. T.; Hamielec, A. E. J Appl Polym Sci 1973, 17, 905.
- 43 O'Neil, G. A.; Wisnudel, M. B.; Torkelson, J. M. Macromolecules 1996, 29, 7477.
- 44 O'Neil, G. A.; Torkelson, J. M. Trends Polym Sci 1997, 5, 349.
- 45 O'Neil, G. A.; Wisnudel, M. B.; Torkelson, J. M. Macromolecules 1998, 31, 4537.
- 46 American Society for Testing and Materials. Standard Test Methods for Particle Size (Sieve Analysis) of Plastic Materials; American Society for Testing and Materials: Philadelphia, PA, 1993. ASTM D 1921–612.
- 47 Guo, Z.; Yang, G.; Wan, D.; Huang, J. J Appl Polym Sci 2001, 82, 1474.
- 48 Kongkeaw, A.; Wootthikanokkhan, J. J Appl Polym Sci 2000, 75, 938.
- 49
Kongkeaw, A.;
Wootthikanokkhan, J.
ScienceAsia
1999,
25,
35.
10.2306/scienceasia1513-1874.1999.25.035 Google Scholar
- 50 Randall, J. C. Polymer Sequence Determination; Academic Press: New York, 1977.
- 51 Opresnik, M.; Sebenik, A.; Polym Int 1995, 36, 13.
- 52 Zhu, S.; Hamielec, A. E. Polymer 1991, 32, 3021.
- 53 Villalobos, M. A.; Hamielec, A. E.; Wood, P. E. J Appl Polym Sci 1993, 50, 327.
- 54
Hourihan, J.;
Lovelock, J. E.
Chromatographia
1989,
28,
645.
10.1007/BF02260694 Google Scholar