Diphenylselenonium 2,3,4,5-tetraphenylcyclopentadienylide-initiated polymerization of styrene and acrylonitrile: Synthesis, characterization, reactivity ratios, and thermal properties
Anamika Singh
Analytical Research Laboratory, Department of Chemistry, Harcourt Butler Technological Institute, Kanpur 208002, India
Search for more papers by this authorMeet Kamal
Department of Chemistry, Christ Church College, Kanpur 208001, India
Search for more papers by this authorCorresponding Author
D. K. Singh
Analytical Research Laboratory, Department of Chemistry, Harcourt Butler Technological Institute, Kanpur 208002, India
Analytical Research Laboratory, Department of Chemistry, Harcourt Butler Technological Institute, Kanpur 208002, India===Search for more papers by this authorAnamika Singh
Analytical Research Laboratory, Department of Chemistry, Harcourt Butler Technological Institute, Kanpur 208002, India
Search for more papers by this authorMeet Kamal
Department of Chemistry, Christ Church College, Kanpur 208001, India
Search for more papers by this authorCorresponding Author
D. K. Singh
Analytical Research Laboratory, Department of Chemistry, Harcourt Butler Technological Institute, Kanpur 208002, India
Analytical Research Laboratory, Department of Chemistry, Harcourt Butler Technological Institute, Kanpur 208002, India===Search for more papers by this authorAbstract
Solution copolymerization of styrene (Sty) and acrylonitrile (AN) was carried out in dioxane at 60 ± 1°C for 90 min using diphenylselenonium 2,3,4,5-tetraphenylcyclopentadienylide (selenonium ylide) as radical initiator. The kinetic expression is as follows: Rp ∼ [Ylide]0.5 [Sty]1.0 [AN]1.0. The overall activation energy is 28.72 kJ mol−1. The composition of copolymer calculated from 1H-NMR and elemental analysis was used to evaluate reactivity ratio as r1 (Sty) = 0.351 and r2 (AN) = 0.0185, using kelen-Tudos method. It confirmed the alternating nature of the copolymer. The copolymer was characterized using Fourier transform infrared (FTIR) spectroscopy, 1H-NMR, 13C-NMR, differential scanning calorimetry, and thermal gravimetric analysis. Electron spin resonance spectroscopy confirmed the presence of the phenyl radical responsible for initiation. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011
References
- 1 Tirrell, D. A. In Encyclopedia of Polymer Science and Engineering, 2nd ed.; H. Mark, N. M. Bikales, C. G. Overberger, G. Menges, Eds.; Wiley: New York, 1985; Vol. 4, p 192.
- 2 Zutty, N. L.; Faucher, J. A. J Polym Sci 1962, 60, 536.
- 3 Rees, R. W.; Vaughan, D. J. Polym Prepr (Am Chem Soc Div Polym Chem) 1965, 61, 287.
- 4 Fernandez-Monreal, C.; Martinez, G.; Sanchez-Chaves, M.; Madruga, E. L. J Polym Sci Part A: Polym Chem 2001, 39, 2043.
- 5 Fernandez Garcia, M.; Torrado, M. F.; Martinez, G.; Sanchez-Chaves, M.; Madruga, E. L. Polymer 2000, 41, 8001.
- 6 Liu, Y.; Mao, R.; Huglin, M. B.; Holmes, P. A. Polymer 1996, 37, 1437.
- 7 Fernandez-Garcia, M.; de la Fuente, J. L.; Fernandez-Sanz, M.; Madruga, E. L. Macromol Rapid Commun 2001, 22, 451.
- 8 Gatcia, N.; Diaz, F. R.; Gargallo, L.; Radic, D. Polym Bull 1998, 40, 707.
- 9 Liaw, D.-J.; Huang, C.-C.; Sang, H.-C.; Wu, P.-L. Polymer 2000, 41, 6123.
- 10 Choudhary, M. S.; Varma, I. K. J Macromol Sci Chem 1983, 20, 771.
- 11 Schoonbroad, H. A. S.; Aerdts, A. M.; Germar, A. L.; der Velden, G. P. M. Macromolecules 1995, 28, 5518.
- 12
Mckee, G. E.;
Kistenmacher, A.;
Goerrissen, H.;
Breulmann, M. In
Modern Styrenic Polymers;
J. Scheirs,
D. B. Priddy, Eds.;
Wiley:
New York,
2003;
Chapter 16, p
341.
10.1002/0470867213.ch16 Google Scholar
- 13 Ulcnik-Krump, M.; Stadler, R.; Malavasic, T. Macromol Symp 2000, 149, 131.
- 14 Potschke, P.; Paul, D. R. Macromol Symp 2003, 198, 69.
- 15 Cho, K.; Kressler, J.; Inoue, T. Polymer 1994, 35, 1332.
- 16 Woo, E. M.; Mandal, T. K.; Chang, L. L. Macromolecules 2000, 33, 4186.
- 17 Pagnoulle, C.; Jerome, R. Macromolecules 2001, 34, 965.
- 18 Kim, E. K.; Kramer, E. J.; Garrett, P. D.; Mendelson, R. A.; WuWa, C. Polymer 1995, 36, 2427.
- 19 Liu, D.; Padias, A. B.; Hall, H. K., Jr. Macromolecules 1995, 28, 622.
- 20 Mendizabel, E.; Velazquez, S.; Gozalez, V.; Jasso, C. F. Polym Eng Sci 1995, 35, 195.
- 21 Svoboda, P.; Kresseler, J.; Inoue, T. J Macromol Sci Phys 1996, B35, 509.
- 22 Wey, M. Y.; Chang, C. L. Polym Degrad Stab 1995, 48, 25.
- 23 Klaric, I.; Roje, U.; Stipanelov, N. J Appl Polym Sci 1999, 71, 833.
- 24 Srivastava, N.; Rai, J. S. P. Br Polym J 1990, 22, 347.
- 25 Srivastava, N.; Rai, J. S. P.; Srivastava, A. K. Asian J Chem 1990, 2, 356.
- 26 Schmidbair, H. Pure Appl Chem 1980, 52, 1057.
- 27 Johnson, A. W. Ylide Chemistry, 7th ed.; Academic Press: New York, 1966.
- 28 Kobayashi, M.; Sanda, F.; Endo, T. Macromolecules 2000, 33, 5384.
- 29 Vasistha, R.; Kumar, P.; Awasthi, S. K.; Bhatnagar, U.; Srivastava, A. K. Colloid Polym Sci 1990, 268, 645.
- 30 Srivastava, A. K.; Daniel, N. J Polym Res 2000, 7, 161.
- 31 Shukla, A. K.; Saini, S.; Kumar, P.; Rai, J. S. P.; Srivastava, A. K. J Polym Sci Part A: Polym Chem 1989, 27, 807.
- 32 Saini, S.; Vasishtha, R.; Shukla, P.; Srivastava, A. K. Macromolecules 1989, 22, 1025.
- 33 Prajapati, K.; Varshney, A. Polym Int 2007, 56, 32.
- 34 Srivastava, S.; Srivastava, A. K. J Polym Mater 2006, 23, 127.
- 35 Daniel, N.; Srivastava, A. K. Adv Polym Technol 2002, 21, 108.
- 36 Katiyar, R.; Bag, D. S.; Nigam, I. J Macromol Sci Pure Appl Chem 2010, 47, 468.
- 37 Bhatnagar, U.; Srivastava, A. K. Polym Int 1991, 25, 13.
- 38 Singh, A.; Kamal, M.; Singh, D. K. J Macromol Sci Pure Appl Chem 2009, A-46, 899.
- 39 Overberger, C. G.; Yamamoto, N. J. J Polym Sci 1966, A-1, 3101.
- 40 Lloyd, D.; Singer, M. I. C. Chem Commun 1967, 390.
- 41 Sauer, B. B.; Kim, Y. H. Macromolecules 1997, 30, 3323.
- 42 Tashiro, K.; Yoshioka, A. Macromolecules 2004, 37, 467.
- 43 Turner, D. T.; Schwartz, A.; Graper, A.; Sugg, H.; Williams, J. L. Polymer 1986, 27, 1619.
- 44 Gibbs, J. H.; Di, E. A. J Polym Sci Part A: Gen Pap 1963, 1, 1417.
- 45 Kelen, T.; Tudos, F. J. Macromol Sci Chem Ed 1975, A9, 1.