Preparation and properties of thermally conductive photosensitive polyimide/boron nitride nanocomposites
Tung-Lin Li
Department of Materials Science and Engineering, Center for Micro/Nano Science and Technology, National Cheng-Kung University, No.1, University Road, Tainan City 701 Tainan, Taiwan, Republic of China
Search for more papers by this authorCorresponding Author
Steve Lien-Chung Hsu
Department of Materials Science and Engineering, Center for Micro/Nano Science and Technology, National Cheng-Kung University, No.1, University Road, Tainan City 701 Tainan, Taiwan, Republic of China
Department of Materials Science and Engineering, Center for Micro/Nano Science and Technology, National Cheng-Kung University, No.1, University Road, Tainan City 701 Tainan, Taiwan, Republic of China===Search for more papers by this authorTung-Lin Li
Department of Materials Science and Engineering, Center for Micro/Nano Science and Technology, National Cheng-Kung University, No.1, University Road, Tainan City 701 Tainan, Taiwan, Republic of China
Search for more papers by this authorCorresponding Author
Steve Lien-Chung Hsu
Department of Materials Science and Engineering, Center for Micro/Nano Science and Technology, National Cheng-Kung University, No.1, University Road, Tainan City 701 Tainan, Taiwan, Republic of China
Department of Materials Science and Engineering, Center for Micro/Nano Science and Technology, National Cheng-Kung University, No.1, University Road, Tainan City 701 Tainan, Taiwan, Republic of China===Search for more papers by this authorAbstract
A new thermally conductive photoresist was developed. It was based on a dispersion of boron nitride (BN) nanoflakes in a negative-tone photosensitive polyimide (PSPI) precursor. 3-Mercaptopropionic acid was used as the surfactant to modify the BN nanoflake surface for the dispersion of BN nanoflakes in the polymer. The thermal conductivity of the composite films increased with increasing BN fraction. The thermal conductivity of the PSPI/BN nanocomposite was up to 0.47 W m−1 K−1 for a mixture containing 30 wt % nanosized BN filler in the polyimide matrix. Patterns with a resolution of 30 μm were obtained from the PSPI/BN nanocomposites. The PSPI/BN nanocomposites had excellent thermal properties. Their glass-transition temperatures were above 360°C, and the thermal decomposition temperatures were over 460°C. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011
References
- 1 Ghosh, M. K.; Mittal, K. L. Polyimides: Fundamentals and Applications; Marcel Dekker: New York, 1996.
- 2 Horie, K.; Yamashita, T. Photosensitive Polyimides, Fundamentals and Applications; Technomic: Lancaster, PA, 1995.
- 3 Jiguet, S.; Bertsch, A.; Hofmann, H.; Renaud, P. Adv Funct Mater 2005, 15, 1511.
- 4 Jiguet, S.; Bertsch, A.; Hofmann, H.; Renaud, P. Adv Eng Mater 2004, 6, 719.
- 5 Li, T. L.; Hsu, S. L. C. J Polym Sci Part A: Polym Chem 2009, 47, 1575.
- 6 Ketkar, S. A.; Umarji, G. G.; Phatak, G. J.; Ambekar, J. D.; Rao, I. C.; Mulik, U. P.; Amalerkar, D. P. Mater Sci Eng B 2006, 132, 215.
- 7 Ketkar, S. A.; Umarji, G. G.; Phatak, G. J.; Ambekar, J. D.; Mulik, U. P.; Amalerkar, D. P. Mater Chem Phys 2006, 96, 145.
- 8 Umarji, G. G.; Ketkar, S. A.; Phatak, G. J.; Giramkar, V. D.; Mulik, U. P.; Amalerkar, D. P. Microelectron Reliab 2005, 45, 1903.
- 9 Hauptman, N.; Zveglic, M.; Macek, M.; Gunde, M. K. J Mater Sci 2009, 44, 4625.
- 10 Mionic, M.; Jiguet, S.; Judelewicz, M.; Forro, L.; Magrez, A. Phys Status Solidi B 2009, 246, 2461.
- 11 Liu, L.; Lu, Q.; Yin, J.; Qian, X.; Wang, W.; Zhu, Z.; Wang, Z. Mater Chem Phys 2002, 74, 210.
- 12 Liang, Z. M.; Yin, J.; Wu, J. H.; Qiu, Z. X.; He, F. F. Eur Polym J 2004, 40, 307.
- 13 Wang, Y. W.; Yen, C. T.; Chen, W. C. Polymer 2005, 46, 6959.
- 14 Jiguet, S.; Judelewicz, M.; Mischler, S.; Hofmann, H.; Bertsch, A.; Renaud, P. Surf Coat Tech 2006, 21, 2289.
- 15 Zhang, A. P.; He, S.; Kim, K. T.; Yoon, Y. K.; Burzynski, R.; Samoc, M.; Prasad, P. N. Appl Phys Lett 2008, 93, 203509.
- 16 Jiguet, S.; Bertsch, A.; Judelewicz, M.; Hofmann, H.; Renaud, P. Microelectron Eng 2006, 83, 1966.
- 17 Lee, C. K.; Don, T. M.; Lai, W. C.; Chen, C. C.; Lin, D. J.; Cheng, L. P. Thin Solid Films 2008, 516, 8399.
- 18 Shimazaki, Y.; Hojo, F.; Takezawa, Y. Appl Phys Lett 2008, 92, 133309.
- 19 Bujard, P.; Kuhnlein, G.; Ino, S.; Shiobara, T. IEEE Trans Compon Packag Manuf Technol Part A 1994, 17, 527.
- 20 Lee, W. S.; Yu, J. Diamond Relat Mater 2005, 14, 1647.
- 21 Gonon, P.; Sylvestre, A.; Teysseyre, J.; Prior, C. J Mater Sci Mater Electron 2001, 12, 81.
- 22 Hussain, M.; Oku, Y.; Nakahira, A.; Niihara, K. Mater Lett 1996, 26, 177.
- 23 Zhou, W.; Wang, C.; Ai, T.; Wu, K.; Zhao, F.; Gu, H. Compos Part A 2009, 40, 830.
- 24 He, H.; Fu, R.; Shen, Y.; Han, Y.; Song, X. Compos Sci Technol 2007, 67, 2493.
- 25 Riley, F. L. J Am Ceram Soc 2000, 83, 245.
- 26 Yu, S.; Hing, P.; Hu, X. Compos Part A 2002, 33, 289.
- 27 Kume, S.; Yamada, I.; Watari, K.; Harada, I.; Mitsuishi, K. J Am Ceram Soc 2009, 92, S153.
- 28 Lee, E. S.; Lee, S. M.; Shanefield, D. J.; Cannon, W. R. J Am Ceram Soc 2008, 91, 1169.
- 29
Huang, M. T.;
Ishida, H.
J Polym Sci Part B: Polym Phys
1999,
37,
2360.
10.1002/(SICI)1099-0488(19990901)37:17<2360::AID-POLB7>3.0.CO;2-V CAS Web of Science® Google Scholar
- 30 Ishida, H.; Rimdusit, S. Thermochim Acta 1998, 320, 177.
- 31 Hill, R. F.; Supancic, P. H. J Am Ceram Soc 2002, 85, 851.
- 32 Hsu, S. L. C.; Fan, M. H. Polymer 2004, 45, 1101.
- 33 Sainabury, T.; Ikuno, T.; Okawa, D.; Pacile, D.; Frechet, J. M. J.; Zettl, A. J Phys Chem C 2007, 111, 12992.
- 34 Lee, G. W.; Park, M.; Kim, J.; Lee, J. I.; Yoon, H. G. Compos Part A 2006, 37, 727.