Morphology, dynamic mechanical, and electrical properties of bio-based poly(trimethylene terephthalate) blends, part 1: Poly(trimethylene terephthalate)/poly(ether esteramide)/polyethylene glycol 400 bis(2-ethylhexanoate) blends
Corresponding Author
Toshikazu Kobayashi
Engineering Polymers, DuPont Co., Wilmington, Delaware 19880-0323
Engineering Polymers, DuPont Co., Wilmington, Delaware 19880-0323===Search for more papers by this authorBarbara A. Wood
Central Research and Development, DuPont Co., Wilmington, Delaware 19880-0323
Search for more papers by this authorGregory S. Blackman
Central Research and Development, DuPont Co., Wilmington, Delaware 19880-0323
Search for more papers by this authorAkio Takemura
Laboratory of Polymeric Materials, Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8567, Japan
Search for more papers by this authorCorresponding Author
Toshikazu Kobayashi
Engineering Polymers, DuPont Co., Wilmington, Delaware 19880-0323
Engineering Polymers, DuPont Co., Wilmington, Delaware 19880-0323===Search for more papers by this authorBarbara A. Wood
Central Research and Development, DuPont Co., Wilmington, Delaware 19880-0323
Search for more papers by this authorGregory S. Blackman
Central Research and Development, DuPont Co., Wilmington, Delaware 19880-0323
Search for more papers by this authorAkio Takemura
Laboratory of Polymeric Materials, Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8567, Japan
Search for more papers by this authorAbstract
Bio-based PTT and PTT blends with PEEA of two different ion contents (275 ppm Na and 3515 ppm Na) and PEG 400 bis (2-ethylhexanoate) were prepared by melt processing. The blends were characterized by differential scanning calorimetry, dynamic mechanical analysis, transmission electron microscopy, and atomic force microscopy. Electro-static performance was also investigated for those PTT blends since PEEA is known as an ion conductive polymer. Here we confirmed that PEG 400 bis (2-ethylhexanoate) improves the static decay performance of PTT/PEEA blends. DMA strongly suggests that PEG 400 bis (2-ethylhexanoate) and PEEA are miscible pairs, and PEG 400 bis (2-ethylhexanoate) selectively goes into the PEEA phase rather than the PTT phase, which lowers the Tg of PEEA. Besides topographic analysis of morphology and phase separation, tunneling atomic force microscopy was also applied to see if we can observe the surface directly for the static dissipative material. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011
References
- 1 Emptage, M.; Haynie, S.; Laffend, L.; Pucci, J.; Whited, G. Eur. Pat. EP 1,204,755 ( 2001).
- 2 Whited, G. M.; Bulthuis, B.; Trimbur, D. E.; Gatenby, A. A. Eur. Pat. EP 1,076,708 ( 1999).
- 3 Burch, R. R.; Dorsch, R. R.; Laffend, L. A.; Nagarajan, V. Int. Pat. WO 0,111,070 ( 2001).
- 4 Kurian, J. V. J Polym Environ 2005, 13, 159.
- 5 Grebowicz, J. S.; Brown, H.; Chuah, H. H.; Olvera, J. M.; Wasiak, A.; Sajkiewicz, P. Polymer 2001, 42, 7153.
- 6 Wu, J.; Schultz, J. M.; Samon, J. M.; Pangelinan, A. B.; Chuah, H. H. Polymer 2001, 42, 7161.
- 7 Wu, G.; Li, H. W.; Wu, Y. Q.; John, A. C. Polymer 2002, 43, 4915.
- 8 Shu, Y. C.; Hsiao, K. J. Eur Polym J 2006, 42, 2773.
- 9 Ho, R. M.; Ke, K. Z.; Chen, M. Macromolecules 2000, 33, 7529.
- 10 Wang, B. J.; Christopher, Y. L.; Jennifer, H.; Stephen, Z. D. C.; Phillip, H. G. Polymer 2001, 42, 7171.
- 11 Chen, M.; Chen, C. C.; Ke, K. Z.; Ho, R. M. J Macromol Sci Phys 2002, 41, 1063.
- 12 Yun, J. H.; Kuboyama, K.; Chiba, T.; Ougizawa, T. Polymer 2006, 47, 4831.
- 13 Chung, W. T.; Yeh, W. J.; Hong, P. D. J Appl Polym Sci 2002, 83, 2426.
- 14 Chuah, H. H. Polym Eng Sci 2001, 41, 308.
- 15 Hong, P. D.; Chung, W. T.; Hsu, C. F. Polymer 2002, 43, 3335.
- 16 Srimoaon, P.; Dangseeyun, N.; Supaphol, P. Eur Polym J 2004, 40, 599.
- 17 Chuang, W. T.; Hong, P. D.; Chuah, H. H. Polymer 2004, 45, 2413.
- 18 Xue, M. L.; Yu, Y. L.; Sheng, J.; Chuah, H. H. J Macromol Sci Polym Phys 2005, 44, 531.
- 19 Xue, M. L.; Sheng, J.; Yu, Y. L.; Chuah, H. H. Eur Polym J 2004, 40, 811.
- 20 Liu, Z.; Chen, K.; Yau, D. Eur Polym J 2003, 39, 2359.
- 21 Ou, C. F. J Polym Sci Part B: Polym Phys 2003, 41, 2902.
- 22 Liu, Z.; Chen, K.; Yau, D. Polym Test 2004, 23, 323.
- 23 Mishra, J. K.; Chang, Y. W.; Choi, N. S. Polym Eng Sci 2007, 47, 863.
- 24 Xu, Y.; Jia, H. B.; Piao, J. N.; Ye, S. R.; Huang, J. J Mater Sci 2008, 43, 417.
- 25 Chung, G. S.; Choi, K. R.; Lin, K. Y.; Kim, B. C. Polym Mater Sci Eng 2001, 84, 501.
- 26 Kuo, Y. H.; Woo, E. M. Polym J 2003, 35, 236.
- 27 Supaphol, P.; Dangseeyun, N.; Thanomkiat, P.; Nithitanakul, M. J Polym Sci Part B: Polym Phys 2004, 42, 676.
- 28 Supaphol, P.; Dangseeyun, N.; Srimoaon, P.; Nithitanakul, M. Polym Test 2004, 23, 175.
- 29 Xue, M. L.; Sheng, J.; Chuah, H. H.; Zhang, X. Y. J Macromol Sci Phys 2004, 43, 1045.
- 30 Lee, L. T.; Woo, E. M. Colloid Polym Sci 2004, 282, 1308.
- 31 Oh, S. J.; Chae, D. W.; Lee, H. J.; Kim, B. C. Polym Mater Sci Eng 2001, 84, 621.
- 32 Bae, W. J.; Jo, W. H.; Park, Y. H. Macromol Res 2002, 10, 145.
- 33 Ravikumar, H. B.; Raganathaiah, C.; Kumaraswamy, G. N.; Thomas, S. Polymer 2005, 46, 2372.
- 34 Aravind, I.; Albert, P.; Ranganathaia, C.; Kurian, J. V.; Thomas, S. Polymer 2005, 45, 4925.
- 35 Ravikumar, H. B.; Ranganathaiah, C. Polym Int 2005, 54, 1288.
- 36 Jafari, S. H.; Asadinezhad, A.; Yavari, A.; Khonakdar, H. A.; Bohme, F. Polym Bull 2005, 54, 417.
- 37 Jafari, S. H.; Yavari, A.; Asadinezhad, A.; Khonakdar, H. A.; Bohme, F. Polymer 2005, 46, 5082.
- 38 Kuo, J. M.; Woo, E. M.; Kuo, T. Y. Polym J 2001, 33, 920.
- 39 Huang, J. M.; Chang, F. C. J Appl Polym Sci 2002, 84, 850.
- 40 Fukunaga, K.; Maeno, T. J. Electrostatics 1997, 40/41, 431.
- 41 Kobayashi, T.; Wood, B. A.; Takemura, A.; Ono, H. J Electrostatics 2006, 64, 377.
- 42 Kobayashi, T.; Wood, B. A.; Takemura, A.; Ono, H. Polym Eng Sci 2008, 48, 2247.
- 43 Chang, J. C.; Kurian, J. V.; Miller, R. W. U.S. Pat. 7,033,530 ( 2006).
- 44 Giardino, C. J; Griffith, D. B.; Ho, C.; Howell, J. M.; Watkins, M. H.; Duffy, J. J. U.S. Pat. 6,353,062 ( 2002).
- 45 Zhang, J. J. Appl Polym Sci 2004, 91, 1657.
- 46 Pyda, M.; Boller, A.; Grebowicz, J.; Chuah, H.; Lebedev, B. V.; Wunderlich, B. J Polym Sci Part B: Polym Phys 1998, 36, 2499.
- 47 Gonzalez, C. C.; Perena, J. M.; Bello, A. J Polym Sci Part B: Polym Phys 1988, 26, 1397.
- 48 Kalakkunnath, S.; Kalika, D. S. Polymer 2006, 47, 7085.
- 49 Mackintosh, A. R.; Liggat, J. J. J Appl Polym Sci 2004, 92, 2791.
- 50 Maxwell, A. S.; Monnerie, L.; Ward, I. M. Polymer 1998, 39, 6851.
- 51 Corrales, T.; Peinado, C.; Bosch, P.; Catalina, F. Polymer 2004, 45, 1545.
- 52 Couchman, P. R.; Karasz, F. E. Macromolecules 1978, 11, 117.
- 53 Fox, T. G. Bull Am Phys Soc 1956, 2, 123.
- 54 Gordon, M.; Taylor, J. S. J Appl Chem 1952, 2, 493.
- 55
Utracki, L. A.
Adv Polym Technol
1985,
5,
33.
10.1002/adv.1985.060050105 Google Scholar
- 56
Matsui, M.;
Kashiwamura, T.
Sen-I Gakkaishi
1993,
49,
421.
10.2115/fiber.49.8_421 Google Scholar