Synthesis and characterization of glutaraldehyde-crosslinked calcium alginate for fluoride removal from aqueous solutions
Y. Vijaya
Biopolymers and Thermophysical Laboratory, Department of Chemistry, Sri Venkateswara University, Tirupati 517502
Search for more papers by this authorSrinivasa R. Popuri
Department of Biological and Chemical Sciences, The University of the West Indies, Cave Hill, Barbados 11000
Search for more papers by this authorA. Subba Reddy
Biopolymers and Thermophysical Laboratory, Department of Chemistry, Sri Venkateswara University, Tirupati 517502
Search for more papers by this authorCorresponding Author
A. Krishnaiah
Biopolymers and Thermophysical Laboratory, Department of Chemistry, Sri Venkateswara University, Tirupati 517502
Biopolymers and Thermophysical Laboratory, Department of Chemistry, Sri Venkateswara University, Tirupati 517502===Search for more papers by this authorY. Vijaya
Biopolymers and Thermophysical Laboratory, Department of Chemistry, Sri Venkateswara University, Tirupati 517502
Search for more papers by this authorSrinivasa R. Popuri
Department of Biological and Chemical Sciences, The University of the West Indies, Cave Hill, Barbados 11000
Search for more papers by this authorA. Subba Reddy
Biopolymers and Thermophysical Laboratory, Department of Chemistry, Sri Venkateswara University, Tirupati 517502
Search for more papers by this authorCorresponding Author
A. Krishnaiah
Biopolymers and Thermophysical Laboratory, Department of Chemistry, Sri Venkateswara University, Tirupati 517502
Biopolymers and Thermophysical Laboratory, Department of Chemistry, Sri Venkateswara University, Tirupati 517502===Search for more papers by this authorAbstract
A novel biosorbent was developed by the crosslinking of an anionic biopolymer, calcium alginate, with glutaraldehyde. The glutaraldehyde-crosslinked calcium alginate (GCA) was characterized by Fourier transform infrared spectroscopy and porosity and surface area analysis. The batch equilibrium and column flow adsorption characteristics of fluoride onto the biosorbent were studied. The effects of the pH, agitation time, concentration of adsorbate, and amount of adsorbent on the extent of adsorption were investigated. The experimental data were fitted to the Langmuir and Freundlich adsorption isotherms. The data were analyzed on the basis of the Lagergren pseudo-first-order, pseudo-second-order, and Weber–Morris intraparticle diffusion models. The maximum monolayer adsorption capacity of the GCA sorbent as obtained from the Langmuir adsorption isotherm was found to be 73.5 mg/g for fluoride. The χ2 and sum of squares of the error analysis were used to correlate the equilibrium isotherm models and kinetics. In addition, breakthrough curves were obtained from column flow experiments. The experimental results demonstrate that the GCA beads could be used for the defluoridation of drinking water through adsorption. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011
References
- 1 Veressinina, Y.; Trapido, M.; Ahelik, V.; Munter, R. Proc Estonian Acad Sci Chem 2001, 50, 81.
- 2 Sarala, K.; Rao, P. R. Fluoride 1993, 26, 177.
- 3 Fluoride: Environmental Health Criteria; WHO Report; World Health Organization: Geneva, Switzerland, 1984.
- 4 Fink, G. J.; Lindsay, F. K. Ind Eng Chem 1936, 28, 947.
- 5 Parthasarathy, N.; Buffle, J.; Haerdi, W. Can J Chem 1986, 64, 24.
- 6 Popat, K. M.; Anand, P. S.; Dasare, B. D. React Polym 1994, 23, 23.
- 7 Joshi, S. V.; Mehta, S. H.; Rao, A. P.; Rao, A. V. Water Treat 1992, 7, 207.
- 8 Simons, R. Desalination 1993, 89, 325.
- 9 Adhikary, S. K.; Tipnis, U. K.; Harkare, W. P.; Govindan, K. P. Desalination 1989, 71, 301.
- 10 Hichour, M.; Persin, F.; Sandeaux, J.; Gavach, C. Sep Purif Technol 2000, 18, 1.
- 11 Nawlakhe, W. G.; Paramasivam, R. Curr Sci 1993, 65, 743.
- 12 Shen, F.; Chen, X.; Gao, P.; Chen, G. Chem Eng Sci 2003, 58, 987.
- 13 Vaaramaa, K.; Lehto, J. Desalination 2003, 155, 157.
- 14 Kang, M.; Chen, H.; Sato, Y.; Kamei, T.; Magara, Y. Water Res 2003, 37, 4599.
- 15 Fan, X.; Parker, D. J.; Smith, M. D. Water Res 2003, 37, 4929.
- 16 Crist, R. H.; Oberhulser, K.; Shanke, N.; Nguyen, M. Environ Sci Tech 1981, 15, 1212.
- 17 Greene, B.; McPherson, R.; Damall, D. Metals Speciation, Separation and Recovery; Lewis: Chelsea, MI, 1987; p 315.
- 18 Mann, H. Biosorption of Heavymetals; CRC: Boca Raton, FL, 1990; p 93.
- 19 Hunt, S. Immobilization of Ions by Biosorption; Ellis Harwood: Chichester, England, 1996; p 15.
- 20 Kagne, S.; Jagtap, S.; Dhawade, P.; Kamble, S. P.; Devotta, S.; Rayalu, S. S. J Hazard Mater 2008, 154, 88.
- 21 Sairam, S. C.; Viswanathan, N.; Meenakshi, S. J Hazard Mater 2008, 215, 206.
- 22 Daifullah, A. A. M.; Yakout, S. M.; Elreefy, S. A. J Hazard Mater 2007, 147, 633.
- 23 Mohan, D.; Singh, K. P.; Singh, V. K. J Hazard Mater 2008, 152, 1045.
- 24 Islam, M.; Patel, R. K. J Hazard Mater 2007, 143, 303.
- 25 Wang, H.; Chen, J.; Cai, Y.; Ji, J.; Liu, L.; Teng, H. H. Appl Clay Sci 2007, 35, 59.
- 26 Meenakshi, S.; Sairam, S. C.; Sukumar, R. J Hazard Mater 2008, 153, 164.
- 27 Tor, A. Desalination 2006, 201, 267.
- 28 Chubar, N. I.; Samanidou, V. F.; Kouts, V. S.; Gallios, G. G.; Kanibolotsky, V. A.; Strelko, V. V.; Zhuravlev, I. Z. J Colloid Interface Sci 2005, 291, 67.
- 29 Zhao, Y.; Li, X.; Liu, L.; Chen, F. Carbohydr Polym 2008, 72, 144.
- 30 Nigussie, W.; Zewge, F.; Chandravanshi, B. S. J Hazard Mater 2007, 147, 954.
- 31 Gopal, V.; Elango, K. P. J Hazard Mater 2007, 141, 98.
- 32 Yadav, A. K.; Kaushik, C. P.; Haritash, A. K.; Kansal, A.; Rani, N. J Hazard Mater 2006, 128, 289.
- 33 Eskandarpour, A.; Onyango, M. S.; Ochieng, A.; Asai, S. J Hazard Mater 2008, 152, 571.
- 34 Sairam, S. C.; Viswanathan, N.; Meenakshi, S. Bioresour Technol 2008, 99, 8226.
- 35 An, H. K.; Park, B. Y.; Kim, D. S. Water Res 2001, 35, 3551.
- 36 Rabek, J. F. Experimental Methods in Polymer Chemistry; Wiley: New York, 1980; p 238.
- 37 Huang, R. Y. M.; Pal, R.; Moon, G. Y. J Membr Sci 1999, 160, 101.
- 38 Raichur, A. M.; Basu, M. J. Sep Purif Technol 2001, 24, 121.
- 39 Sujana, M. G.; Thakur, R. S.; Rao, S. B. J Colloid Interface Sci 1988, 206, 94.
- 40 Langmuir, I. J Am Chem Soc 1916, 38, 2221.
- 41 Raji, C.; Anirudhan, T. S. Water Res 1998, 32, 3772.
- 42 McKay, G.; Blair, H. S.; Gardner, J. R. J Appl Polym Sci 1982, 27, 3043.
- 43 Freundlich, H. F. M. Z Phys Chem 1906, 57, 385.
- 44 Meenakshi, S.; Viswanathan, N. J Colloid Interface Sci 2007, 308, 438.
- 45 Sharma, Y. Colloid Surf A 2003, 55, 215.
- 46 Shakinah, P.; Kadirivelu, K.; Kanmani, P.; Subburam, V. J Chem Technol Biotechnol 2002, 77, 458.
- 47 Das, N.; Pattanaik, P.; Das, R. J Colloid Interface Sci 2005, 292, 1.
- 48 Quek, S. Y.; Wase, D. A. J.; Forster, C. F. Water SA 1998, 24, 251.
- 49 McKay, G.; Ho, Y. S. Water Res 1999, 33, 578.
- 50 Chiou, M. S.; Li, H. Y. J Hazard Mater 2002, 93, 233.
- 51 Sag, Y.; Aytay, Y. Process Biochem 1995, 30, 169.
- 52 Vijaya, Y.; Krishnaiah, A. E J Chem 2009, 6, 713.
- 53 Kovacevic, Z. F.; Sipos, L.; Briski, F. Food Technol Biotechnol 2000, 38, 211.
- 54 Hawari, H. A.; Mulligan, C. N. Process Biochem 2006, 41, 187.
- 55 Vijayaraghavan, K.; Jegan, J.; Palanivelu, K.; Velan, M. Chemosphere 2005, 60, 419.