Artificial and natural weathering of ABS
R. M. Santos
Departamento de Química, Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal
Departamento de Engenharia de Polímeros, Universidade do Minho, Campus de Azurém, Guimarães 4800-058, Portugal
Search for more papers by this authorG. L. Botelho
Departamento de Química, Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal
Search for more papers by this authorCorresponding Author
A. V. Machado
Departamento de Engenharia de Polímeros, Universidade do Minho, Campus de Azurém, Guimarães 4800-058, Portugal
Departamento de Engenharia de Polímeros, Universidade do Minho, Campus de Azurém, Guimarães 4800-058, Portugal===Search for more papers by this authorR. M. Santos
Departamento de Química, Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal
Departamento de Engenharia de Polímeros, Universidade do Minho, Campus de Azurém, Guimarães 4800-058, Portugal
Search for more papers by this authorG. L. Botelho
Departamento de Química, Universidade do Minho, Campus de Gualtar, Braga 4710-057, Portugal
Search for more papers by this authorCorresponding Author
A. V. Machado
Departamento de Engenharia de Polímeros, Universidade do Minho, Campus de Azurém, Guimarães 4800-058, Portugal
Departamento de Engenharia de Polímeros, Universidade do Minho, Campus de Azurém, Guimarães 4800-058, Portugal===Search for more papers by this authorAbstract
Acrylonitrile-butadiene-styrene (ABS) is a complex copolymer with exceptional importance in technological applications. However, ABS is known to present a high susceptibility to weathering when exposed to UV radiation in the presence of oxygen. In this work, photodegradation of ABS was studied under natural and accelerated conditions. Exposed samples were removed periodically and characterized by several analytical techniques. During both types of weathering chemical modifications occurs mainly at the surface, which affects considerable the optical, mechanical, and rheological properties. The results obtained evidence that during accelerated weathering the formation rate of photodegradation products is higher when compared to natural weathering results. However, chain scission occurs mainly along natural conditions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010
References
- 1 Kulich, D. M.; Pace, J. E.; Fritch, L. W.Jr; Brisimitzakis, A. In Encyclopedia of Chemical Technology; J. Kroschlowitz, Ed.; Wiley: New York, 1991; p 391.
- 2 Schlick, S.; Lucarini, H.; Pedulli, G. F.; Motyakin, M. V. Prog Polym Sci 2003, 28, 331.
- 3 Hill, D. J. T.; Le, T. T.; O'Donnell, J. H.; Perera, M. C. S.; Pomery, P. J. In Irradiation of Polymeric Materials: Processes, Mechanisms, and Applications; E. Reichmanis, C. W. Frank, J. H. O'Donnell, Eds.; American Chemical Society: Washington, 1993.
- 4 O'Donnell, J. H. In The Effects of Radiation on High-Technology Polymers, E. Reichmanis, J. H. O'Donnell, Eds.; American Chemical Society: Washington, 1993.
- 5 R. G. Clough; N. C. Billingham; K. T. Gillen, Eds. Polymer Durability: Degradation, Stabilization and Lifetime Prediction; American Chemical Society: Washington, 1996; p 249.
- 6
Rabek, J. F.
Polymer Photodegradation – Mechanisms and experimental methods;
Chapman & Hall:
London,
1995.
10.1007/978-94-011-1274-1 Google Scholar
- 7 Shimada, J.; Kabuki, K. J Appl Polym Sci 1968, 12, 655.
- 8 Shimada, J.; Kabuki, K.; Ando, M. Rev Elect Commun Lab 1972, 20, 553.
- 9 Davis, A.; Gordon, D. J Appl Polym Sci 1974, 18, 1173.
- 10 Beavan, S. W.; Phillips, D. Eur Polym J 1974, 10, 593.
- 11 Graffar, A.; Scott, A.; Scott, C. Eur Polym J 1977, 13, 83.
- 12 Scott, G.; Tahan, M. Eur Polym J 1977, 13, 981.
- 13 Adeniyi, J. B. Eur Polym J 1984, 20, 291.
- 14 Adeniyi, J. B.; Kolawole, E. G. Eur Polym J 1984, 20, 43.
- 15 Delprat, P.; Gardette, J. L. Polymer 1993, 34, 933.
- 16 Jouan, X.; Gardette, J. L. Polym Degrad Stab 1992, 36, 91.
- 17 Baba, M.; Gardette, J. L.; Bussière, P. O.; Lacoste, J. Polym Degrad Stab 2005, 88, 182.
- 18 Piton, M.; Rivaton, A. Polym Degrad Stab 1997, 55, 147.
- 19 Jouan, X.; Gardette, J. L. J Polym Sci A: Polym Chem 1991, 29, 685.
- 20 Gardette, J. L.; Mailhot, B. J Polym Degrad Stab 1995, 48, 457.
- 21 Schlick, S.; Bokria, J. G. Polymer 2002, 43, 3239.
- 22 Pfahler, G.; Lotzsch, K. Kunststoffe 1988, 78, 21.
- 23 Knight, J. B.; Calvert, P. D.; Billingham, N. C. Polymer 1985, 26, 1713.
- 24 Pickett, J. E.; Gibson, D. A.; Rice, S. T.; Gardner, M. M. Polym Degrad Stab 2008, 93, 684.
- 25 Gugumus, F. In Plastic Additives Handbook, R. Gachter, H. Muller, Eds.; Hanser Publisher: Munich, Vienna, New York, 1990.
- 26 Pickett, J. E.; Gibson, D. A.; Gardner, M. M. Polym Degrad Stab 2008, 93, 1597.
- 27 Heikkila, A.; Karha, P.; Tanskanen, A.; Kaumismaa, M.; Koskela, T.; Kaurola, J.; Ture, T.; Syrjala, S. Polym Test 2009, 28, 57.
- 28 Botelho, G.; Queirós, A.; Ferreira, J. C.; Frangiosa, P.; Machado, A. V. Polym Degrad Stab 2004, 86, 493.
- 29 Duarte, F. M.; Botelho, G.; Machado, A. V. Polym Test 2006, 25, 91.
- 30 Gijsman, P. , Ph.D. Dissertation, Eindhoven University, 1994.
- 31
Kresta, J.;
Majer, J.;
Vesely, K. J.
J Polym Sci Part C: Polym Symp
1967,
22,
329.
10.1002/polc.5070220127 Google Scholar
- 32ISO 4892. Plastics – Methods of Exposure to Laboratory Light Sources; Part 3: Fluorescent UV lamps, International Organization for Standardization, 1994.
- 33ASTM Method D 1435; Standard Practice for Outdoor Weathering of Plastics, American Society for Testing and Materials, 2005.
- 34ASTM-D2244; Standard Practice for Calculation of Color Tolerances and Color Differences from Instrumentally Measured Color Coordinates; American Society for Testing and Materials, 2009.
- 35 Bower, D. I.; Maddams, W. F. The Vibrational Spectroscopy of Polymers; Cambridge University Press: Cambridge, United Kingdom, 1992.
- 36 Botelho, G.; Queirós, A.; Liberal, S.; Gijsman, P. Polym Degrad Stab 2001, 74, 39.
- 37 Pimentel Real, L.; Gardette, J. L. Polym Test 2001, 20, 779.
- 38 Blom, H.; Yeh, R.; Wojnarowski, R.; Ling, M. Thermochim Acta 2006, 442, 64.