Synthesis of starch esters in ionic liquids
Corresponding Author
Wenlei Xie
School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450052, People's Republic of China
School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450052, People's Republic of China===Search for more papers by this authorLi Shao
School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450052, People's Republic of China
Search for more papers by this authorYawei Liu
School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450052, People's Republic of China
Search for more papers by this authorCorresponding Author
Wenlei Xie
School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450052, People's Republic of China
School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450052, People's Republic of China===Search for more papers by this authorLi Shao
School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450052, People's Republic of China
Search for more papers by this authorYawei Liu
School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450052, People's Republic of China
Search for more papers by this authorAbstract
Chemical modification of corn starches with succinic anhydride or acetic anhydride was carried out using 1-butyl-3-methylimidazolium chloride (BMIMCl) as a reaction medium. The reaction progress was followed in terms of the degree of substitution (DS) for the starch derivatives. The results showed that the homogeneous esterification of starch at 5 : 1 molar ratio of anhydride/anhydroglucose units at 100°C led to formation of acetates with DS ranging from 0.37 to 2.35 and succinates with DS ranging from 0.03 to 0.93. Moreover, the reaction media applied could be easily recycled and reused. Further, the formation of starch esters was confirmed by the presence of the carbonyl signal in the FTIR and NMR spectra. It was shown that the starch granules were mostly converted from their crystalline structure into amorphous state in the ionic liquid system under the given reaction conditions. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010
References
- 1 Aburto, J.; Hamaili, H.; Mouysset-Baziard, G.; Senocq, F.; Alric, I.; Borredon, E. Starch/Stärke 2000, 51, 302.
- 2 Heinze, T.; Talaba, P.; Heinze, U. Carbohydr Polym 2000, 42, 411.
- 3 Tesch, S.; Gerhards, C.; Schubert, H. J Food Eng 2002, 54, 167.
- 4 Fang, J. M.; Fowler, P. A.; Sayers, C.; Williams, P. A. Carbohydr Polym 2004, 55, 283.
- 5 Chi, H.; Xu, K.; Xue, D.; Song, C.; Zhang, W.; Wang, P. Food Res Int 2007, 40, 232.
- 6 Song, X.; He, G.; Ruan, H.; Chen, Q. Starch/Stärke 2006, 58, 109.
- 7 Sun, R.; Sun, X. F. Carbohydr Polym 2002, 47, 323.
- 8 Aburto, J.; Alric, I.; Thiebaud, S.; Borredon, E.; Bikiaris, D.; Prinos, J.; Panayiotou, C. J Appl Polym Sci 1999, 74, 1440.
- 9 Mathew, S.; Abraham, T. E. Food Chem 2007, 105, 579.
- 10 Thiebaud, S.; Aburto, J.; Alric, I.; Borredon, E.; Bikiaris, D.; Prinos, J.; Panayiotou, C. J Appl Polym Sci 1997, 65, 705.
- 11 Wasserscheid, P.; Welton, T. Ionic Liquids in Synthesis; Wiley-VCH: Weinheim, 2003.
- 12 Seoud, E. O. A.; Koschella, A.; Fidale, L. C.; Dorn, S.; Heinze, T. Biomacromolecules 2007, 8, 2629.
- 13 Welton, T. Chem Rev 1999, 99, 2071.
- 14 Wu, J.; Zhang, J.; Zhang, H.; He, J.; Ren, Q.; Guo, M. Biomacromolecules 2004, 5, 266.
- 15 Stevenson, D. G.; Biswas, A.; Jane, J.; Inglett, G. E. Carbohydr Res 2007, 67, 21.
- 16 Xu, Q.; Kennedy, J. F.; Liu, L. Carbohydr Polym 2008, 72, 113.
- 17 Biswas, A.; Shogren, R. L.; Stevenson, D. G.; Willett, J. L.; Bhowmik, P. K. Carbohydr Polym 2006, 66, 546.
- 18 Huddleston, J. G.; Visser, A. E.; Reichert, W. M.; Willauer, H. D.; Broker, G. A.; Rogers, R. D. Green Chem 2001, 3, 156.
- 19 Bunton, C. A. Nucleophilic Substitution at a Saturated Carbon Atom: Reactions in Organic Chemistry; Elsevier: New York, 1963.
- 20 Bhandari, P. N.; Singhal, R. S. Carbohydr Polym 2002, 47, 277.
- 21 Biswas, A.; Shogren, R. L.; Kim, S.; Willett, J. L. Carbohydr Polym 2006, 64, 484.
- 22 Raina, C. S.; Singh, S.; Bawa, A. S.; Saxena, D. C. Eur Food Res Technol 2006, 223, 561.
- 23 Kweon, D. K.; Choi, J. K.; Kim, E. K.; Lim, S. T. Carbohydr Polym 2001, 46, 171.
- 24 Jeon, Y.; Vishwanathan, A.; Gross, R. A. Starch/Stärke 1999, 51, 90.
- 25 Bhosale, R.; Singhal, R. Carbohydr Polym 2006, 66, 521.
- 26 Kacurakova, M.; Wilson, R. H. Carbohydr Polym 2001, 44, 291.
- 27 Thygesen, L. G.; Lkke, M. M.; Micklander, E.; Engelsen, S. B. Trends Food Sci Technol 2003, 14, 50.
- 28 Elomaa, M.; Asplund, T.; Soininen, P.; Laatikainen, R.; Peltonen, S.; Hyvärinen, S.; Urtti, A. Carbohydr Polym 2004, 57, 261.
- 29 Laignel, B.; Bliard, C.; Massiot, G.; Nuzillard, J. M. Carbohydr Res 1996, 29, 251.
- 30 Zobel, H. F. Starch/Stärke 1988, 40, 1.
- 31 Fang, J. M.; Fowler, P. A.; Tomkinson, J.; Hill, C. A. S. Carbohydr Res 2002, 50, 429.
- 32 Neumann, U.; Wiege, B.; Warwel, S. Starch/Stärke 2002, 54, 449.
- 33 Aburto, J.; Alric, I.; Borredon, E. Starch/Stärke 1999, 51, 132.
- 34 Aburto, J.; Alric, I.; Borredon, E. Starch/Stärke 2005, 57, 145.