Electrical-transport properties of iodine-doped conducting polyaniline
A. Sarkar
Department of Physics, National Institute of Technology, Durgapur, Deemed University, Mahatma Gandhi Avenue, Pin 713 209, West Bengal, India
Search for more papers by this authorP. Ghosh
Department of Physics, National Institute of Technology, Durgapur, Deemed University, Mahatma Gandhi Avenue, Pin 713 209, West Bengal, India
Search for more papers by this authorCorresponding Author
A. K. Meikap
Department of Physics, National Institute of Technology, Durgapur, Deemed University, Mahatma Gandhi Avenue, Pin 713 209, West Bengal, India
Department of Physics, National Institute of Technology, Durgapur, Deemed University, Mahatma Gandhi Avenue, Pin 713 209, West Bengal, India===Search for more papers by this authorS. K. Chattopadhyay
Department of Physics, National Institute of Technology, Durgapur, Deemed University, Mahatma Gandhi Avenue, Pin 713 209, West Bengal, India
Search for more papers by this authorS. K. Chatterjee
Department of Physics, National Institute of Technology, Durgapur, Deemed University, Mahatma Gandhi Avenue, Pin 713 209, West Bengal, India
Search for more papers by this authorP. Chowdhury
Department of Chemistry, Visva-Bharati, Santiniketan 731 235, West Bengal, India
Search for more papers by this authorK. Roy
Department of Chemistry, Visva-Bharati, Santiniketan 731 235, West Bengal, India
Search for more papers by this authorB. Saha
Department of Chemistry, Visva-Bharati, Santiniketan 731 235, West Bengal, India
Search for more papers by this authorA. Sarkar
Department of Physics, National Institute of Technology, Durgapur, Deemed University, Mahatma Gandhi Avenue, Pin 713 209, West Bengal, India
Search for more papers by this authorP. Ghosh
Department of Physics, National Institute of Technology, Durgapur, Deemed University, Mahatma Gandhi Avenue, Pin 713 209, West Bengal, India
Search for more papers by this authorCorresponding Author
A. K. Meikap
Department of Physics, National Institute of Technology, Durgapur, Deemed University, Mahatma Gandhi Avenue, Pin 713 209, West Bengal, India
Department of Physics, National Institute of Technology, Durgapur, Deemed University, Mahatma Gandhi Avenue, Pin 713 209, West Bengal, India===Search for more papers by this authorS. K. Chattopadhyay
Department of Physics, National Institute of Technology, Durgapur, Deemed University, Mahatma Gandhi Avenue, Pin 713 209, West Bengal, India
Search for more papers by this authorS. K. Chatterjee
Department of Physics, National Institute of Technology, Durgapur, Deemed University, Mahatma Gandhi Avenue, Pin 713 209, West Bengal, India
Search for more papers by this authorP. Chowdhury
Department of Chemistry, Visva-Bharati, Santiniketan 731 235, West Bengal, India
Search for more papers by this authorK. Roy
Department of Chemistry, Visva-Bharati, Santiniketan 731 235, West Bengal, India
Search for more papers by this authorB. Saha
Department of Chemistry, Visva-Bharati, Santiniketan 731 235, West Bengal, India
Search for more papers by this authorAbstract
We investigated the electrical-transport properties of hydroiodic acid doped polyaniline in the temperature range 77–300 K, applying magnetic field strength to a maximum of 1 T in the frequency range 20 Hz–1 MHz. The direct-current conductivity was explained by variable range hopping theory, and the direct-current magnetoconductivity, which was positive, was interpreted by orbital magnetoconductivity theory. The alternating-current (ac) conductivity was found to follow the universal dielectric response σ′(f) ∝ fs, where σ′(f) is the frequency-dependent real part of the complex ac conductivity, f is the frequency, and s is the frequency exponent. The trend in the variation of s, the temperature dependence of the frequency exponent, corroborated the fact that the correlated barrier hopping was the dominating charge-transport mechanism. The ac conductivity also showed a positive variation with magnetic field, which could be interpreted by this theory. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008
References
- 1 Naarman, H. Science and Application of Conducting Polymers; Adam Hilger: Bristol, 1991.
- 2 Genies, E. M.;Hany, P.;Santier, C. J Appl Electrochem 1988, 18, 751.
- 3 Joo, J.;Epstein, A. J. Appl Phys Lett 1994, 65, 2278.
- 4 Bartlett, P. N.;Birkin, P. R. Synth Met 1993, 61, 15.
- 5 Osaheni, J. Á.;Jenekhe, A. S.;Vanherzeele, H.;Meth, J. S.;Sun, Y.;MacDiarmid, A. G. J Phys Chem 1992, 96, 2830.
- 6 Kobayashi, T.;Yoneyama, H.;Tamura, H. J Electroanal Chem 1984, 161, 419.
- 7 Hau, Z.;Shi, J.;Zhang, L.;Ruan, M.;Yan, J. Adv Mater 2002, 14, 830.
- 8 Levi, B. G. Phys Today 2000, 53, 19.
- 9 Genies, E. M.;Boyle, A.;Lapkowski, M.;Tsintavis, C. Synth Met 1990, 36, 139.
- 10 MacDiarmid, A. G.;Chiang, J. C.;Halpern, M.;Haung, W. S.;Um, S. L.;Somasiri, N. L. D.;Wu, W. Q.;Yaninger, S. Z. Mol Cryst Liq Cryst 1985, 121, 173.
- 11 Chiang, J. C.;MacDiarmid, A. G. Synth Met 1986, 13, 193.
- 12 Skothemin, T.;Elsenbaumer, R. Handbook of Conducting Polymers; Marcel Dekker: New York, 1998.
- 13 MacDiarmid, A. G. Conjugated Polymers and Related Materials; Oxford University Press: London, 1993.
- 14 Seanor, D. A. Electronic Properties of Polymers; Academic: New York, 1992.
- 15 Ghosh, M.;Barman, A.;Das, A.;Meikap, A. K.;De, S. K.;Chatterjee, S. J Appl Phys 1998, 83, 4230.
- 16 Burroughes, J. H.;Bradely, D. C.;Brown, A. R.;Marks, R. N.;Mackey, K.;Friend, R. H.;Bruns, P. L. Nature 1990, 347, 539.
- 17 Chien, W. C. Polyacetylene; Academic: New York, 1984.
- 18 Jin, Z.;Su, Y.;Duan, Y. Sensors Actuators B 2001, 72, 75.
- 19 Sotomayor, P. T.;Raimurdo, I. M.,Jr.;Zarbin, A. J. G.;Rohwedder, J. J. R.;Netto, G. O.;Alves, O. L. Sensors Actuators B 2001, 74, 157.
- 20 Kane-Magurie, L. A. P.;Wallasce, G. G. Synth Met 2001, 119, 39.
- 21 Hamers, R. J. Nature (London) 2001, 412, 489.
- 22 Rosseinssky, D. R.;Mortimer, R. J. Adv Mater 2001, 13, 783.
- 23 Ghosh, M.;Barman, A.;Meikap, A. K.;De, S. K.;Chatterjee, S.;Chattopadhyay, S. K. J Appl Polym Sci 2000, 75, 1480.
- 24 Sarkar, A.;Ghosh, P.;Meikap, A. K.;Chattopadhyay, S. K.;Chatterjee, S. K.;Ghosh, M. J Appl Phys 2005, 97, 113713.
- 25 Ghosh, P.;Sarkar, A.;Meikap, A. K.;Chattopadhyay, S. K.;Chatterjee, S. K.;Ghosh, M. J Phys D: Appl Phys 2006, 39, 3047.
- 26 Kahol, P. K.;Pinto, N. J.;Berndtsson, E. J.;Mccormic, B. J. J Phys: Condens Matter 1994, 6, 5631.
- 27 Kahol, P. K.;Pendse, V.;Pinto, N. J.;Traore, M.;Stevenson, W. T. K.;Mccormick, B. J.;Gundersen, J. N. Phys Rev B 1994, 50, 2809.
- 28 Sanjai, B.;Roghunathan, A.;Natarajan, T. S.;Rangarajan, G. Phys Rev B 1997, 55, 10734.
- 29 Wang, Z. H.;Scherr, E. M.;MacDiarmid, A. G.;Epstein, A. J. Phys Rev B 1992, 45, 4190.
- 30 Wang, Z. H.;Li, C.;Scherr, E. M.;MacDiarmid, A. G.;Epstein, A. J. Phys Rev Lett 1991, 66, 1745.
- 31 Ghosh, M.;Barman, A.;De, S. K.;Chatterjee, S. J Appl Phys 1998, 84, 806.
- 32 Inoue, M.;Navarro, R. E.;Inoue, M. B. Synth Met 1989, 30, 199.
- 33 MacDiarmid, A. G.;Chiang, J. C.;Richter, A. F.;Epstein, A. J. Synth Met 1987, 18, 285.
- 34 Li, W.;Zhang, Q.;Chen, D.;Li, L. J Macromol Sci Pure Appl Chem 2006, 43, 1815.
- 35 Ção, Y.;Li, S.;Xue, Z.;Guo, D. Synth Met 1986, 16, 305.
- 36 Park, Y. W.;Moon, J. S.;Bak, M. K.;Jin, J. I. Synth Met 1989, 29, 389.
- 37 Cruz, C. J.;Morales, J.;Castillo-Ortega, M. M.;Olayo, R. Synth Met 1997, 88, 213.
- 38
Zeng, X. R.;Ko, T. M.
J Polym Sci Part B: Polym Phys
1997,
35,
1993.
10.1002/(SICI)1099-0488(19970930)35:13<1993::AID-POLB1>3.0.CO;2-O CAS Web of Science® Google Scholar
- 39 Zeng, X. R.;Ko, T. M. Polymer 1998, 39, 1187.
- 40 Kalsi, P. S. Spectroscopy of Organic Compounds, 6th ed.; New Age International: New Delhi, 2004; p 111.
- 41 Athawale, A. A.;Chabukswar, V. V. J Appl Polym Sci 2001, 79, 1994.
- 42 Palaniappan, S. Eur Polym J 2001, 37, 975.
- 43 Zhang, Z.;Wei, Z.;Wan, M. Macromolecules 2002, 35, 3967.
- 44 Marie, E.;Rothe, R.;Antonietti, M.;Landfester, K. Macromolecules 2003, 36, 3967.
- 45 Ruckenstein, E.;Yin, W. J Appl Polym Sci 2001, 79, 80.
- 46 Athawale, A. A.;Kulkarni, M. V.;Chabukswar, V. V. Mater Chem Phys 2002, 73, 106.
- 47 Dyer, J. R. Application of Absorption Spectroscopy of Organic Compounds; Prentice Hall of India: New Delhi, 1991; p 36.
- 48 Campos, T. L. A.;Kersting, D. F.;Ferreira, C. A. Surface Coat Technol 1997, 122, 3.
- 49 Mott, N. F.;Davis, E. Electronics Process in Nanocrystalline Materials, 2nd ed.; Clarendon: Oxford, 1979.
- 50 Friedman, L.;Pollak, M. Phil Mag B 1978, 38, 173.
- 51 Tokumoto, H.;Mansfield, R.;Lea, M. J. Phil Mag B 1982, 46, 93.
- 52 Shklovskii, B. I. Sov Phys JETP Lett 1982, 36, 51.
- 53 Shklovskii, B. I. Sov Phys Semicond 1983, 17, 1311.
- 54
Shklovskii, B. I.;Efroa, A. L.
Electronic Properties of Doped Semiconductors;
Springer:
Berlin,
1984; p
202.
10.1007/978-3-662-02403-4_9 Google Scholar
- 55 Schoepe, W. Z Phys B 1988, 71, 455.
- 56 Nguyen, V. L.;Spivak, B. Z.;Shklovskii, B. I. JETP Lett 1985, 41, 42.
- 57 Nguyen, V. L.;Spivak, B. Z.;Shklovskii, B. I. Sov Phys JETP 1985, 62, 1021.
- 58 Sivan, U.;Entin-Wohiman, O.;Imry, Y. Phys Rev Lett 1988, 60, 1566.
- 59 Long, A. R. Adv Phys 1982, 31, 553.
- 60 Elliott, S. R. Adv Phys 1987, 36, 135.
- 61 Efros, A. L. Phil Mag B 1981, 43, 829.
- 62 Catalan, G. Appl Phys Lett 2006, 88, 102902.
- 63
Cole, K. S.;Cole, R. H.
J Chem Phys
1941,
9,
441.
10.1063/1.1750932 Google Scholar
- 64 Frohlieh, H. Theory of Dielectrics; Oxford University Press: London, 1958.
- 65 Maxwell, J. C. A Treatise on Electricity and Magnetism; Oxford University Press: Oxford, 1988; Vol. 1.
- 66 Wagner, K. W. Annu Phys (Lpz) 1913, 40, 53.
- 67 Hippel, V. Dielectrics and Waves; Wiley: New York, 1954.