Kinetics of microwave-assisted polymerization of ϵ-caprolactone
G. Sivalingam
Department of Chemical Engineering, Indian Institute of Science, Bangalore 560 012, India
Search for more papers by this authorNitin Agarwal
Department of Chemical Engineering, Indian Institute of Science, Bangalore 560 012, India
Search for more papers by this authorCorresponding Author
Giridhar Madras
Department of Chemical Engineering, Indian Institute of Science, Bangalore 560 012, India
Department of Chemical Engineering, Indian Institute of Science, Bangalore 560 012, India===Search for more papers by this authorG. Sivalingam
Department of Chemical Engineering, Indian Institute of Science, Bangalore 560 012, India
Search for more papers by this authorNitin Agarwal
Department of Chemical Engineering, Indian Institute of Science, Bangalore 560 012, India
Search for more papers by this authorCorresponding Author
Giridhar Madras
Department of Chemical Engineering, Indian Institute of Science, Bangalore 560 012, India
Department of Chemical Engineering, Indian Institute of Science, Bangalore 560 012, India===Search for more papers by this authorAbstract
The kinetics of polymerization of ϵ-caprolactone (CL) in bulk was studied by irradiating with microwave of 350 W and frequency of 2.45 GHz with different cycle-heating periods (30–50 s). The molecular weight distributions were determined as a function of reaction time by gel permeation chromatography. Because the temperature of the system continuously varied with reaction time, a model based on continuous distribution kinetics with time/temperature-dependent rate coefficients was proposed. To quantify the effect of microwave on polymerization, experiments were conducted under thermal heating. The polymerization was also investigated with thermal and microwave heating in the presence of zinc catalyst. The activation energies determined from temperature-dependent rate coefficients for pure thermal heating, thermally aided catalytic polymerization, and microwave-aided catalytic polymerization were 24.3, 13.4, and 5.7 kcal/mol, respectively. This indicates that microwaves increase the polymerization rate by lowering the activation energy. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1450–1456, 2004
References
- 1 Jacob, J.; Chia, L. H. L.; Boey, F. Y. C. J Appl Polym Sci 1997, 63, 787.
- 2 Stuchly, M. A.; Stuchly S. S. IEEE Proc 1983, 130, 467.
- 3 Correa, R.; Gonzalez, G.; Dougar, V. Polymer 1998, 39, 1471.
- 4 Chia, L. H. L.; Jacob, J.; Boey, F. Y. C. J Mater Proc Technol 1995, 48, 445.
- 5 Jacob, J.; Chia, L. H. L.; Boey, F. Y. C. Polym Test 1995, 14, 343.
- 6 Mallon, F. K.; Ray, W. H. J Appl Polym Sci 1998, 69, 1203.
- 7 Mijovic, J.; Wijaya, J. Macromolecules 1990, 23, 3671.
- 8 Mijovic, J.; Fishbain, A.; Wijaya, J. Macromolecules 1992, 25, 986.
- 9 Raner, K. D.; Stranus, C. R. J Org Chem 1992, 57, 6231.
- 10 Marand, E.; Baker, K. R.; Graykeal, J. D. Macromolecules 1992, 25, 2243.
- 11 Berlan, J. S.; Aiboreau, S.; Lefeuvre, S.; Marchand, C. Tetrahedron Lett 1991, 32, 2363.
- 12 Bram, G.; Loupy, M.; Majdoub, M.; Autierez, E.; Hitzkey, E. R. Tetrahedron 1990, 46, 5167.
- 13 Baghurst, D. R.; Mingos, D. M. P. J Chem Soc Chem Commun 1992, 674.
- 14 Gibson, C.; Matthews, I.; Samuel, A. J Microwave Power Electromagn Energy 1988, 23, 17.
- 15 Meek, T. T.; Blake, R. D.; Katz, J. D.; Bradbury, J. R.; Brooks, M. H. J Mater Sci Lett 1998, 7, 928.
- 16 Karmazsin, E.; Satra, P.; Rochas, J. F. Thermochim Acta 1985, 93, 305.
- 17 Singer, S. M.; Jow, J.; Delong, J. D.; Hawley, M. C. SAMPE Q 1989, 20, 4.
- 18 Linders, T. M.; Kokje, J. P.; Overhand, M.; Lie, T. S.; Maat, L. Recl Trav Chim Pays-Bas 1988, 107, 449.
- 19 Roussy, G.; Thiebaut, J. M.; Anzarmou, M.; Richard, C.; Martin, R. J Microwave Power Electromagn Energy Symp 1987, 169.
- 20
Alloum, A. B.;
Labiad, B.;
Villemin, D.
J Chem Soc Chem Commum
1989,
386.
10.1039/c39890000386 Google Scholar
- 21 Xu, W.; Bao, J.; Zhang, J.; Shi, M. J Appl Polym Sci 1998, 70, 2343.
- 22
Whittkaer, A.;
Mingos, D. M. P.
J Microwave Power Electromagn Energy
1994,
29,
195.
10.1080/08327823.1994.11688249 Google Scholar
- 23 Barakat, I.; Dubois, Ph.; Jerome, R.; Teyssie, Ph. Macromolecules 1991, 24, 6542.
- 24
Fang, X.;
Hutcheon, R.;
Scola, D. A.
J Polym Sci Part A: Polym Chem
2000,
38,
1379.
10.1002/(SICI)1099-0518(20000415)38:8<1379::AID-POLA22>3.0.CO;2-F CAS Web of Science® Google Scholar
- 25 Moila, C.; Hamaide, T.; Spitz, R. Polymer 1997, 38, 5667.
- 26 Doi, Y. Microbial Polyesters; VCH: New York, 1990.
- 27 Dubois, Ph.; Jacobs, C.; Jerome, R.; Teyssie, Ph. Macromolecules 1978, 11, 68.
- 28 Kricheldorf, H. R.; Saunders, I. K.; Boettcher, C. Polymer 1995, 36, 1253.
- 29
Kowalski, A.;
Duda, A.;
Penczek, S.
Macromolecules Rapid Commun
1998,
19,
567.
10.1002/(SICI)1521-3927(19981101)19:11<567::AID-MARC567>3.0.CO;2-T CAS Web of Science® Google Scholar
- 30
Sosnowski, S.;
Slomkowski, S.;
Penczek, S.
Reibel, L.
Makromol Chem
1983,
84,
2159.
10.1002/macp.1983.021841020 Google Scholar
- 31 Ito, K.; Hashizuka, Y.; Yamashita, Y. Macromolecules 1977, 10, 821.
- 32 Ito, K.; Yamashita, Y. Macromolecules 1978, 11, 68.
- 33 Okuda, J.; Rushkin, I. L. Macromolecules 1993, 26, 5530.
- 34 Ouhadi, T.; Stevens, C.; Teyssie, Ph. Makromol Chem Suppl 1975, 1, 191.
- 35 Endo, M.; Aida, T.; Inoue, S. Macromolecules 1987, 20, 2982.
- 36 Shen, Y.; Shen, Z.; Shen, J.; Zhang, Y.; Yao, K. Macromolecules 1996, 29, 3441.
- 37 Yasuda, H.; Tamai, H. Prog Polym Sci 1993, 18, 1097.
- 38 Stassin, F.; Halleux, O.; Jerome, R. Macromolecules 2001, 34, 775.
- 39 Liao, L. Q.; Liu, L. J.; He, F.; Zhuo, R. X.; Wan, K. J Polym Sci Part A: Polym Chem 2002, 40, 1749.
- 40 Ethel-Browning, M. D. Toxicity of Industrial Metal; Butterworths: London, 1961; Chapter 44, p. 313.
- 41 Ayappa, K. G.; Brandon, S.; Derbym, J. J.; Davis, H. T.; Davis, E. A. AIChE J 1994, 40, 1268.
- 42 Madras, G.; Chattopadhyay, S. J Appl Polym Sci 1996, 2001, 81.