Structure development and interfacial interactions in high-density polyethylene/hydroxyapatite (HDPE/HA) composites molded with preferred orientation
Corresponding Author
Rui A. Sousa
Department of Polymer Engineering, University of Minho, 4800-058 Guimarães, Portugal
Wolfson Centre for Materials Processing, Brunel University, Uxbridge, Middlesex, UB8 3PH, United Kingdom
Department of Polymer Engineering, University of Minho, 4800-058 Guimarães, Portugal===Search for more papers by this authorRui L. Reis
Department of Polymer Engineering, University of Minho, 4800-058 Guimarães, Portugal
Search for more papers by this authorAntónio M. Cunha
Department of Polymer Engineering, University of Minho, 4800-058 Guimarães, Portugal
Search for more papers by this authorMichael J. Bevis
Wolfson Centre for Materials Processing, Brunel University, Uxbridge, Middlesex, UB8 3PH, United Kingdom
Search for more papers by this authorCorresponding Author
Rui A. Sousa
Department of Polymer Engineering, University of Minho, 4800-058 Guimarães, Portugal
Wolfson Centre for Materials Processing, Brunel University, Uxbridge, Middlesex, UB8 3PH, United Kingdom
Department of Polymer Engineering, University of Minho, 4800-058 Guimarães, Portugal===Search for more papers by this authorRui L. Reis
Department of Polymer Engineering, University of Minho, 4800-058 Guimarães, Portugal
Search for more papers by this authorAntónio M. Cunha
Department of Polymer Engineering, University of Minho, 4800-058 Guimarães, Portugal
Search for more papers by this authorMichael J. Bevis
Wolfson Centre for Materials Processing, Brunel University, Uxbridge, Middlesex, UB8 3PH, United Kingdom
Search for more papers by this authorAbstract
Composites of high-density polyethylene (HDPE) filled with sintered and nonsintered hydroxyapatite (HA) powders, designated as HAs and HAns, respectively, were compounded by twin screw extrusion. Compounds with neoalkoxy titanate or zirconate coupling agents were also produced to improve interfacial interaction and filler dispersion in the composites. The composites were molded into tensile test bars using (i) conventional injection molding and (ii) shear-controlled orientation in injection molding (SCORIM). This latter molding technique was used to deliberately induce a strong anisotropic character to the composites. The mechanical characterization included tensile testing and microhardness measurements. The morphology of the moldings was studied by both polarized light microscopy and scanning electron microscopy, and the structure developed was assessed by wide-angle X-ray diffraction. The reinforcing effect of HA particles was found to depend on the molding technique employed. The higher mechanical performance of SCORIM processed composites results from the much higher orientation of the matrix and, to a lesser extent, from the superior degree of filler dispersion compared with conventional moldings. The strong anisotropy of the SCORIM moldings is associated with a clear laminated morphology developed during shear application stage. The titanate and the zirconate coupling agents caused significant variations in the tensile test behavior, but their influence was strongly dependent on the molding technique employed. The application of shear associated with the use of coupling agents promotes the disruption of the HA agglomerates and improves mechanical performance. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2873–2886, 2002
References
- 1 Fawcett, D. A Textbook of Histology; W.B. Saunders Company: Philadelphia, 1986.
- 2 Weiner, S.; Wagner, H.D. Ann Rev Mater Sci 1998, 28, 271.
- 3 Martin, R.B.; Burr, D.B. Structure, Function and Adaptation of Compact Bone; Raven: New York, 1989.
- 4 Ravaglioli, A.; Krawjewski, A.; Celloti, G.C.; Piancastelli, A.; Bachinni, B.; Montanari, L.; Zama, G.; Piombi, L. Biomaterials 1996, 17, 617.
- 5 Evans, G.P.; Behiri, J.C.; Bonfield, W.; Currey, J.D. J Mater Sci: Mater Med 1990, 1, 38.
- 6 Goldstein, S.A. J Biomech 1987, 20, 1055.
- 7 Carter, D.R.; Hayes, W.C. Clin Orthoped 1978, 135, 192.
- 8 Ziv, H.; Wagner, H.; Weiner, S. Bone 1996, 18, 417.
- 9 Weiner, S.; Arad, T.; Sabanay, I.; Traub, W. Bone 1997, 20, 509.
- 10 Bonfield, W. In Monitoring of Orthopaedic Implants; F. Burny, R. Pruers, Eds.; Elsevier Science: Amsterdam, 1993; p. 4.
- 11 Bonfield, W. J Biomech 1987, 20, 1071.
- 12 Keller, T.S.; Mao, Z.; Spengler, D.M. J Orthoped Res 1990, 8, 592.
- 13 Otani, T.; Whiteside, L.A.; White, S.E. J Biomed Mater Res 19993, 27, 575.
- 14
van der Sloten, J.;
van der Perre, G.;
Labey, L.;
van Audekercke, R.;
Helsen, J.
J Mater Sci: Mater Med
1993,
4,
407.
10.1007/BF00122200 Google Scholar
- 15 Bonfield, W.; Grynpas, M.D.; Tully, A.E.; Bowman, J.; Abram, J. Biomaterials 1981, 2, 185.
- 16 Bonfield, W. J Biomed Eng 1988, 10, 522.
- 17 Huang, J.; Di Silvio, L.; Wang, M.; Tanner, K.E.; Bonfield, W. J Mater Sci: Mater Med 1997, 8, 775.
- 18 Huang, J.; Di Silvio, L.; Wang, M.; Rehman, I.; Ohtsuki, I.C.; Bonfield, W. J Mater Sci: Mater Med 1997, 8, 808.
- 19
Suwanprateeb, J.;
Tanner, K.E.;
Turner, S.;
Bonfield, W.
J Biomed Mater Res
1998,
39,
16.
10.1002/(SICI)1097-4636(199801)39:1<16::AID-JBM3>3.0.CO;2-L CAS PubMed Web of Science® Google Scholar
- 20 Suwanprateeb, J.; Tanner, K.E.; Turner, S.; Bonfield, W. J Mater Sci: Mater Med 1997, 8, 469.
- 21 Wang, M.; Porter, D.; Bonfield, W. Br Ceram Trans 1994, 93, 91.
- 22 Guild, F.J.; Bonfield, W. Biomaterials 1993, 13, 985.
- 23 Tanner, K.E.; Downes, R.N.; Bonfield, W. Br Ceram Trans 1994, 93, 104.
- 24 Wang, M.; Ladizesky, N.H.; Tanner, K.E.; Ward, I.M.; Bonfield, W. J Mater Sci 2000, 35, 1023.
- 25 Ladizesky, N.H.; Ward, I.M.; Bonfield, W. Polym Adv Technol 1997, 8, 496.
- 26 Ward, I.M.; Bonfield, W.; Ladizesky, N.H. Polym Int 1997, 43, 333.
- 27 Ladizesky, N.H.; Ward, I.M.; Bonfield, W. J Appl Polym Sci 1997, 65, 1865.
- 28 Ladizesky, N.H.; Pirhonen, E.M.; Appleyard, D.B.; Ward, I.M.; Bonfield, W. Comp Sci. Technol 1998, 58, 419.
- 29 Deb, S.; Wang, M.; Tanner, K.E.; Bonfield, W. J Mater Sci: Mater Med 1996, 7, 191.
- 30 Wang, M.; Deb, S.; Tanner, K.E.; Bonfield, W. ECCM-7 1996, 2, 455–460.
- 31 Deb, S.; Wang, M.; Tanner, K.E.; Bonfield, W. In Proceedings of 12th European Conference on Biomaterials, Porto, Portugal, 10–13 September 1995.
- 32 Wang, M.; Deb, S.; Bonfield, W. Mat Letters 2000, 44, 119.
- 33 Reis, R.L.; Cunha, A.M.; Oliveira, M.J.; Campos, A.R.; Bevis, M.J. Mat Res Innovat 2001, 4, 263.
- 34
Kalay, G.;
Sousa, R.A.;
Reis, R.L.;
Cunha, A.M.;
Bevis, M.J.
J Appl Polym Sci
1999,
73,
2473.
10.1002/(SICI)1097-4628(19990919)73:12<2473::AID-APP16>3.0.CO;2-O CAS Web of Science® Google Scholar
- 35 Wypych, G. Handbook of Fillers, 2nd Ed., ChemTec Publishing: New York, 1999.
- 36 Grossman, R.F. In Plastics Additives and Modifiers Handbook, 2nd ed.; J. Edenbaum, Ed.; Chapman & Hall: New York, 1996.
- 37 Rothon, R.N. In Particulate-Filled Polymer Composites; R.N. Rothon, Ed.; Longman Scientific & Technical: Harlow, U.K., 1995.
- 38 Monte, S.J.; Sugerman, G. Polym Eng Sci 1984, 24, 18.
- 39 Iwashita, N.; Psomiadou, E.; Sawada, Y. Composites Part A 1998, 29A, 965.
- 40
Shiguo, D.;
Jianfei, C.;
Yinghong, X.;
Faxiang, J.;
Xiaoying, J.
J Appl Polym Sci
1997,
63,
1259.
10.1002/(SICI)1097-4628(19970307)63:10<1259::AID-APP3>3.0.CO;2-J Google Scholar
- 41 Arroyo, M.; Perez, F.; Vigo, J.P. J Appl Polym Sci 1986, 32, 5105.
- 42 Lee, N.J.; Jang, J. Composites Sci Technol 1997, 57, 1559.
- 43 Bajaj, P.; Jha, N.K.; Jha, R.K. Polym Eng Sci 1989, 29, 8.
- 44 Liao, B.; Huang, Y.; Cong, G. J Appl Polym Sci 1997, 66, 1561.
- 45
Kharade, A.Y.;
Kale, D.D.
J Appl Polym Sci
1999,
72,
1321.
10.1002/(SICI)1097-4628(19990606)72:10<1321::AID-APP12>3.0.CO;2-9 CAS Web of Science® Google Scholar
- 46 Xavier, S.F.; Schultz, J.M.; Friedrich, K. J Mater Sci 1990, 25, 2425.
- 47 Menon, N.; Blum, F.D.; Dharani, I.R. J Appl Polym Sci 1994, 54, 113.
- 48 Singh, B.; Verma, A.; Gupta, M. J Appl Polym Sci 1998, 70, 1847.
- 49 Hunt, K.N.; Evans, J.R.G.; Woodthorpe, J. Polym Eng Sci 1988, 28, 1572.
- 50 Hostalen Product Information, Germany.
- 51 Monte, S.J. Ken React Reference Manual Titanate, Zirconate and Aluminate Coupling Agents, Kenrich Petrochemicals, Inc., 1993.
- 52 Sim, C.P.; Cheang, P.; Liang, M.H.; Khor, K.A. J Mater Process Technol 1997, 69, 75.
- 53 Wang, M.; Joseph, R.; Bonfield, W. Biomaterials 1998, 19, 2357.
- 54 Xavier, S.F.; Schultz, J.M.; Friedrich, K. J Mater Sci 1990, 25, 2411.
- 55 Odell, J.A.; Grubb, D.T.; Keller, A. Polymer 1978, 19, 617.
- 56 Bashir, Z.; Odell, J.A.; Keller, A. J Mater Sci 1986, 21, 3993.
- 57 Bashir, Z.; Odell, J.A.; Keller, A. J Mater Sci 1984, 19, 3713.
- 58 Ania, F.; Baltá Calleja, F.J.; Bayer, R.K.; Tshmel, A.; Naumann, I.; Michler, G.H. J Mater Sci 1996, 31, 4199.
- 59 Bayer, R.K.; Zachman, H.G.; Baltá Calleja, F.J.; Umbach, H. Polym Eng Sci 1989, 29, 186.
- 60 Kubát, J.A.; Mȧnson, J.A. Polym Eng Sci 1983, 23, 869.
- 61 Kubát, J.A.; Mȧnson, J.A.; Rigdahl M. Polym Eng Sci 1983, 23, 877.
- 62 Boldizar, A.; Mȧnson, J.A.; Rigdahl, M. J Appl Polym Sci 1990, 39, 63.
- 63 Guan, Q.; Shen, K.; Ji, J.; Zhu, J. J Appl Polym Sci 1995, 55, 1797.
- 64 Guan, Q.; Lai, F.S.; McCarthy, S.P.; Chiu, D.; Zhu, X.; Shen, K. Polymer 1997, 38, 5251.
- 65 Mano, J.F.; Sousa, R.A.; Reis, R.L.; Cunha, A.M.; Bevis, M.J. Polymer 2001, 42, 6187.
- 66 F.J. Baltá Calleja, Adv. Polym. Sci., 66 (1985) 117.
- 67 Baltá Calleja, F.J. Trends Polym Sci 1994, 2, 419.
- 68 Flores, A.; Baltá Calleja, F.J.; Basset, D.C. J Polym Sci, Polym Phys Ed 1999, 37, 000.
- 69 Santa Cruz, C.; Baltá Calleja, F.J.; Asano, T.; Ward, I.M. Philos Magaz A 1993, 68, 209.
- 70 Sousa, R.A.; Reis, R.L.; Cunha, A.M.; Bevis, M.J., unpublished results.
- 71 Ogbonna, C.I.; Kakay, G.; Allan, P.S.; Bevis, J. J Appl Polym Sci 1995, 58, 2131.
- 72 Rothon, R.N.; Hancock, M. In Particulate-Filled Polymer Composites; R.N. Rothon, Ed., Longman Scientific & Technical: Harlow, U.K., 1995.