Experimental study on the mechanism of nanoparticles improving the stability of high expansion foam
Corresponding Author
Yixiang Zhang
College of Petroleum Engineering, Xi'an Shiyou University, Xi'an, 710065 China
Correspondence
Yixiang Zhang, College of Petroleum Engineering, Xi'an Shiyou University, Xi'an, 710065, China.
Email: [email protected]
Search for more papers by this authorShilong Feng
College of Petroleum Engineering, Xi'an Shiyou University, Xi'an, 710065 China
Search for more papers by this authorYuhui Jing
Northwest Branch of National Petroleum and Natural Gas Pipeline Network Group Co., Ltd, Xi'an, 710018 China
Search for more papers by this authorJunhua Bai
College of Petroleum Engineering, Xi'an Shiyou University, Xi'an, 710065 China
Search for more papers by this authorCorresponding Author
Yixiang Zhang
College of Petroleum Engineering, Xi'an Shiyou University, Xi'an, 710065 China
Correspondence
Yixiang Zhang, College of Petroleum Engineering, Xi'an Shiyou University, Xi'an, 710065, China.
Email: [email protected]
Search for more papers by this authorShilong Feng
College of Petroleum Engineering, Xi'an Shiyou University, Xi'an, 710065 China
Search for more papers by this authorYuhui Jing
Northwest Branch of National Petroleum and Natural Gas Pipeline Network Group Co., Ltd, Xi'an, 710018 China
Search for more papers by this authorJunhua Bai
College of Petroleum Engineering, Xi'an Shiyou University, Xi'an, 710065 China
Search for more papers by this authorAbstract
High expansion (Hi-Ex) foam is recommended to suppress the leakage and diffusion of cryogenic liquid due to its light weight and large volume. However, the disadvantages of low stability and high break rate under environmental conditions are all limited the further application in vapor mitigation and fire extinguishing. So that, this paper focus on the effect and mechanism of nanoparticles in stabilizing Hi-Ex foam. Three kinds of nanoparticles with different concentration were selected to evaluate the effect of foam half-life and the mechanism of particles on improving the foam stability. The results indicated that different particle concentrations can improve the foam stability to a specific extent, and the maximum improving of half-life can increase by 95.4% in the presence of the hydrophilic SiO2 at .5 wt%. Meanwhile, the hydrophilicity, size, and morphology of the particles have a specific impact on the foam stability. The foam expansion rate first increased and then decreased. From the microscopic point of view, the bubble size gradually increases with time by two processes of ripening and coalescence and satisfied in a logarithmic distribution. While, the liquid film thickness remarkably decreases due to foam drainage without particles and the adsorption and accumulation of nanoparticles on foam lamella can provide a spatial barrier for the film thinning and the inter bubble diffusion. Finally, the microscopic interaction mechanism on improving the foam stability has been further explored and revealed in these two aspects.
REFERENCES
- 1 BP Statistical Review of World Energy 2023. Full Report [N]. BP Statistical Review of World Energy; 2023.
- 2Cevahir T, Ali ÇM. A study on hydrogen, the clean energy of the future: hydrogen storage methods[J]. J Energy Storage. 2021; 40:102676. doi:10.1016/j.est.2021.102676
10.1016/j.est.2021.102676 Google Scholar
- 3Zhang B, Laboureur DM, Liu Y, Gopalaswami N, Mannan MS. Experimental study of a liquefied natural gas pool fire on land in the field. Ind Eng Chem Res. 2018; 57(42): 14297-14306. doi:10.1021/acs.iecr.8b02087
- 4Xu Z, Guo X, Yan L, Kang W. Fire-extinguishing performance and mechanism of aqueous film-forming foam in diesel pool fire. Case Stud Therm Eng. 2020; 17:100578. doi:10.1016/j.csite.2019.100578
- 5Harding B, Zhang B, Liu Y, Chen H, Mannan MS. Improved research-scale foam generator design and performance characterization. J Loss Prevent Process Ind. 2016; 39: 173-180. doi:10.1016/j.jlp.2015.11.016
- 6Takeno K, Ichinose T, Tokuda K, Ohba R, Yoshida K, Ogura K. Effects of high expansion foam dispersed onto leaked LNG on the atmospheric diffusion of vaporized gas. J Loss Prevent Process Ind. 1996; 9(2): 125-133. doi:10.1016/0950-4230(95)00062-3
- 7Zhang B, Liu Y, Olewski T, Vechot L, Mannan MS. Blanketing effect of expansion foam on liquefied natural gas (LNG) spillage pool. J Hazard Mater. 2014; 280: 380-388. doi:10.1016/j.jhazmat.2014.07.078
- 8Yang J, Li Y, Zhu J, Han H. Quantitative study of the factors of LNG liquid foam stability: operating parameters and collection containers and time. Process Saf Environ Prot. 2018; 117: 223-231. doi:10.1016/j.psep.2018.05.005
- 9Guo X, Ye C, Liang X, et al. Analysis on the effects of high expansion foam on evaporation rate of the LNG. Saf Sci. 2021; 137:105183. doi:10.1016/j.ssci.2021.105183
- 10Zhang Z, Wei Z, Pan X, et al. Field experimental study of high expansion foam coverage after LNG leakage. Process Saf Environ Prot. 2024; 183: 315-326. doi:10.1016/j.psep.2024.01.033
- 11Krishnan P, Zhang B, Al-Rabbat A, et al. Effects of forced convection and thermal radiation on high expansion foam used for LNG vapor risk mitigation. J Loss Prev Process Ind. 2018; 55: 423-436. doi:10.1016/j.jlp.2018.07.019
10.1016/j.jlp.2018.07.019 Google Scholar
- 12Zhou R, Dou X, Lang X, He L, Liu J, Mu S. Foaming ability and stability of silica nanoparticle-based triple-phase foam for oil fire extinguishing: experimental. Soft Mater. 2018; 16(1–4): 327-338. doi:10.1080/1539445X.2018.1518878
- 13Wang Y, Wang H, Zhao X, et al. Effect of hydrophobically modified SiO2 nanoparticles on the stability of water-based SDS foam. Arab J Chem. 2020; 13(9): 6942-6948. doi:10.1016/j.arabjc.2020.06.037
- 14Rahman A, Torabi F, Shirif E. Surfactant and nanoparticle synergy: towards improved foam stability. Petroleum. 2023; 9(2): 255-264. doi:10.1016/j.petlm.2023.02.002
10.1016/j.petlm.2023.02.002 Google Scholar
- 15Hunter TN, Pugh RJ, Franks GV, Jameson GJ. The role of particles in stabilising foams and emulsions. Adv Colloid Interf Sci. 2008; 137(2): 57-81. doi:10.1016/j.cis.2007.07.007
- 16Osei-Bonsu K, Shokri N, Grassia P. Foam stability in the presence and absence of hydrocarbons: from bubble to bulk scale. Colloids Surf A Physicochem Eng Asp. 2015; 481: 514-526. doi:10.1016/j.colsurfa.2015.06.023
- 17Sheng Y, Xue M, Zhang S, et al. Effect of xanthan gum and silica nanoparticles on improving foam properties of mixed solutions of short-chain fluorocarbon and hydrocarbon surfactants. Chem Eng Sci. 2021; 245:116952. doi:10.1016/j.ces.2021.116952
- 18Li X, Pu C, Bai Y, Huang F. Effect of surfactant types on the foam stability of multiwalled carbon nanotube stabilized foam. Colloids Surf A Physicochem Eng Asp. 2022; 648:129389. doi:10.1016/j.colsurfa.2022.129389
- 19Fameau A-L, Salonen A. Effect of particles and aggregated structures on the foam stability and aging. Comptes Rendus Phys. 2014; 15(8–9): 748-760. doi:10.1016/j.crhy.2014.09.009
- 20Sheng Y, Xue M, Zhang S, et al. Role of nanoparticles in the performance of foam stabilized by a mixture of hydrocarbon and fluorocarbon surfactants. Chem Eng Sci. 2020; 228:115977. doi:10.1016/j.ces.2020.115977
- 21Tang Q, Huang Z, Wang B, Lu H. Surfactant-free aqueous foams stabilized with synergy of xanthan-based amphiphilic biopolymer and nanoparticle as potential hydraulic fracturing fluids. Colloids Surf A Physicochem Eng Asp. 2020; 603:125215. doi:10.1016/j.colsurfa.2020.125215
- 22Yu X, Qiu K, Yu X, Li Q, Zong R, Lu S. Stability and thinning behaviour of aqueous foam films containing fluorocarbon and hydrocarbon surfactant mixtures. J Mol Liquid. 2022; 359(1):119225. doi:10.1016/j.molliq.2022.119225
- 23Mohammad Z, Nasim B, Riyaz K. Influences of hydrophilic and hydrophobic silica nanoparticles on anionic surfactant properties: interfacial and adsorption behaviors. J Petrol Sci Eng. 2014; 119(1): 36-43.
- 24Fan X, Fan X, Guan X, et al. Aqueous foam synergistically stabilized by the composite of lignin nanoparticles and surfactant. Colloids Surf A Physicochem Eng Asp. 2022; 643:128727. doi:10.1016/j.colsurfa.2022.128727
- 25Li Q, Li S, Yang Y, et al. Synergistic enhancement of foam stability by nanocellulose and hydrocarbon surfactant. Chem Eng Sci. 2024; 299: 120418. doi:10.1016/j.ces.2024.120418
- 26Krishnan P, Al-Rabbat A, Zhang B, et al. Improving the stability of high expansion foam used for LNG vapor risk mitigation using exfoliated zirconium phosphate nanoplates. Process Saf Environ Prot. 2018; 123: 48-58. doi:10.1016/j.psep.2018.12.030
10.1016/j.psep.2018.12.030 Google Scholar
- 27Sheng Y, Li Y, Peng Y, et al. Effect of hydrophilic silica nanoparticles on foam properties of mixtures of silicone and hydrocarbon surfactants. Chem Eng Sci. 2023; 276:118769. doi:10.1016/j.ces.2023.118769
- 28Yang Y, Xujuan W, Zhang J, et al. Plateau boundary blocking effect of nano-SiO2 on foam properties of Gemini fluorocarbon and hydrocarbon surfactant mixed solution. Fire Saf J. 2024; 142:104019. doi:10.1016/j.firesaf.2023.104019
- 29Zhang B, Harding B, Liu Y, Mannan MS. Liquefied natural gas vapor hazard mitigation with expansion foam using a research-scale foam generator. Ind Eng Chem Res. 2016; 55(20): 6018-6024. doi:10.1021/acs.iecr.5b04535
- 30Fu G, Jiang J, Wei D, et al. The study of the stability of aqueous three-phase fire-resistant foam in typical liquidus hydrocarbons. J Disper Sci Technol. 2019; 40(8): 1075-1084. doi:10.1080/01932691.2018.1480385
- 31Shi Q, Qin B, Xu Y, Hao M, Shao X, Zhuo H. Experimental investigation of the drainage characteristic and stability mechanism of gel-stabilized foam used to extinguish coal fire. Fuel. 2022; 313:122685. doi:10.1016/j.fuel.2021.122685
- 32Doroudian Rad M, Xu L, Telmadarreie A, Xu L, Dong M, Bryant SL. Insight on methane foam stability and texture via adsorption of surfactants on oppositely charged nanoparticles. Langmuir. 2018; 34(47): 14274-14285. doi:10.1021/acs.langmuir.8b01966
- 33Yekeen N, Idris AK, Manan MA, Samin AM, Risal AR, Kun TX. Bulk and bubble-scale experimental studies of influence of nanoparticles on foam stability. Chin J Chem Eng. 2017; 25(3): 347-357. doi:10.1016/j.cjche.2016.08.012
- 34Gao H, Zhang M, Xia JJ, Song B, Wang YK. Time and surfactant types dependent model of foams based on the Herschel-Bulkley model. Colloids Surf A Physicochem Eng Asp. 2016; 509: 203-213. doi:10.1016/j.colsurfa.2016.09.010
- 35Desbordes L, Grandjean A, Frances F, Lorcet H, Faure S. Critical bubble diameters and Plateau border dimensions for drainage in aqueous xanthan foams. Colloids Surf A Physicochem Eng Asp. 2021; 612:125682. doi:10.1016/j.colsurfa.2020.125682
- 36Yekeen N, Padmanabhana E, Idris AK. Synergistic effects of nanoparticles and surfactants on n-decane-water interfacial tension and bulk foam stability at high temperature. J Petrol Sci Eng. 2019; 179: 814-830. doi:10.1016/j.petrol.2019.04.109
- 37Kostoglou Margaritis J, Lioumbas J, Karapantsios T. A population balance treatment of bubble size evolution in free draining foams. Colloids Surf A Physicochem Eng Asp. 2015; 473: 75-84. doi:10.1016/j.colsurfa.2014.11.036
- 38Briceño-Ahumada Z, Drenckhan W, Langevin D. Coalescence in draining foams made of very small bubbles. Phys Rev Lett. 2016; 116(12): 128-302. doi:10.1103/PhysRevLett.116.128302
- 39Sheng Y, Xue M, Wang Y, et al. Aggregation behavior and foam properties of the mixture of hydrocarbon and fluorocarbon surfactants with addition of nanoparticles. J Mol Liquid. 2020; 323:115070. doi:10.1016/j.molliq.2020.115070
10.1016/j.molliq.2020.115070 Google Scholar
- 40Tyowua AT, Binks BP. Growing a particle-stabilized aqueous foam. J Colloid Interface Sci. 2019; 561: 127-135. doi:10.1016/j.jcis.2019.11.103
- 41AlYousef Z, Almobarky M, Schechter D. Enhancing the stability of foam by the use of nanoparticles. Energy Fuel. 2017; 31(10): 10620-10627. doi:10.1021/acs.energyfuels.7b01697