The preparation of anti-fouling dual-layer composite membrane with embedding graphene oxide
Xinyue Xu
Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou, China
Search for more papers by this authorQian Wang
Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou, China
Search for more papers by this authorXue Zhu
Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou, China
Search for more papers by this authorQigang Wu
Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou, China
Search for more papers by this authorTao Zheng
Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou, China
Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China
Search for more papers by this authorHaoran Yuan
Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou, China
Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China
Search for more papers by this authorCorresponding Author
Zhengzhong Zhou
Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou, China
Correspondence
Zhengzhong Zhou, Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou 213164, China.
Email: [email protected]
Search for more papers by this authorXinyue Xu
Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou, China
Search for more papers by this authorQian Wang
Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou, China
Search for more papers by this authorXue Zhu
Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou, China
Search for more papers by this authorQigang Wu
Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou, China
Search for more papers by this authorTao Zheng
Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou, China
Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China
Search for more papers by this authorHaoran Yuan
Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou, China
Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China
Search for more papers by this authorCorresponding Author
Zhengzhong Zhou
Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou, China
Correspondence
Zhengzhong Zhou, Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization, Institute of Urban and Rural Mining, Changzhou University, Changzhou 213164, China.
Email: [email protected]
Search for more papers by this authorAbstract
Fouling is one of the most challenging issues faced by membrane technology. One possible approach to address membrane fouling is incorporating hydrophilic materials into the membrane matrix. Graphene oxide (GO) can be a potential candidate due to its hydrophilicity, if its cost could be significantly reduced. In this study, a GO-polysulfone (PSF) composite membrane is fabricated with a thin GO-PSF active layer and a PSF substrate. The obtained membrane shows good anti-fouling property in real sewage system, compared with the pristine PSF membrane, and the flux recovery ratio is enhanced by 20%–30%. In addition, the antibacterial property of GO-PSF membrane to Escherichia coli is enhanced. The work provides a guidance to improve the performance membranes and reduce the cost.
REFERENCES
- 1Kochkodan V, Hilal N. A comprehensive review on surface modified polymer membranes for biofouling mitigation. Desalination. 2015; 356: 187-207. doi:10.1016/j.desal.2014.09.015
- 2Gurung K, Ncibi MC, Shestakova M, Sillanpaa M. Removal of carbamazepine from MBR effluent by electrochemical oxidation (EO) using a Ti/Ta2O5-SnO2 electrode. Appl Catal B-Environ. 2018; 221: 329-338. doi:10.1016/j.apcatb.2017.09.017
- 3Nguyen LN, Hai FI, Kang J, Price WE, Nghiem LD. Removal of emerging trace organic contaminants by MBR-based hybrid treatment processes. Int Biodeter Biodegr. 2013; 85: 474-482. doi:10.1016/j.ibiod.2013.03.014
- 4Sathya U, Nithya M, Balasubramanian N. Evaluation of advanced oxidation processes (AOPs) integrated membrane bioreactor (MBR) for the real textile wastewater treatment. J Environ Manage. 2019; 246: 768-775. doi:10.1016/j.jenvman.2019.06.039
- 5Chang Y-R, Lee Y-J, Lee D-J. Membrane fouling during water or wastewater treatments: current research updated. J Taiwan Inst Chem Eng. 2019; 94: 88-96. doi:10.1016/j.jtice.2017.12.019
- 6Lin H, Zhang M, Wang F, et al. A critical review of extracellular polymeric substances (EPSs) in membrane bioreactors: characteristics, roles in membrane fouling and control strategies. J Membr Sci. 2014; 460: 110-125. doi:10.1016/j.memsci.2014.02.034
- 7Tang Y, Zhang L, Shan C, Xu L, Yu L, Gao H. Enhancing the permeance and antifouling properties of thin-film composite nanofiltration membranes modified with hydrophilic capsaicin-mimic moieties. J Membr Sci. 2020; 610:118233. doi:10.1016/j.memsci.2020.118233
- 8Zhang Y, Liu P. Polysulfone (PSF) composite membrane with micro-reaction locations (MRLs) made by doping sulfated TiO2 deposited on SiO2 nanotubes (STSNs) for cleaning wastewater. J Membr Sci. 2015; 493: 275-284. doi:10.1016/j.memsci.2015.06.011
- 9Kahrs C, Schwellenbach J. Membrane formation via non-solvent induced phase separation using sustainable solvents: a comparative study. Polymer. 2020; 186:122071. doi:10.1016/j.polymer.2019.122071
- 10Lankes U, Lüdemann HD, Frimmel FH. Search for basic relationships between “molecular size” and “chemical structure” of aquatic natural organic matter—answers from C-13 and N-15 CPMAS NMR spectroscopy. Water Res. 2008; 42(4–5): 1051-1060. doi:10.1016/j.watres.2007.09.028
- 11Chen Y, Dong BZ, Gao NY, Fan JC. Effect of coagulation pretreatment on fouling of an ultrafiltration membrane. Desalination. 2007; 204(1–3): 181-188. doi:10.1016/j.desal.2006.04.029
- 12Mahmoudi E, Ng LY, Ba-Abbad MM, Mohammad AW. Novel nanohybrid polysulfone membrane embedded with silver nanoparticles on graphene oxide nanoplates. Chem Eng J. 2015; 277: 1-10. doi:10.1016/j.cej.2015.04.107
- 13Rajaeian B, Rahimpour A, Tade MO, Liu S. Fabrication and characterization of polyamide thin film nanocomposite (TFN) nanofiltration membrane impregnated with TiO2 nanoparticles. Desalination. 2013; 313: 176-188. doi:10.1016/j.desal.2012.12.012
- 14de Lannoy CF, Jassby D, Davis DD, Wiesner MR. A highly electrically conductive polymer-multiwalled carbon nanotube nanocomposite membrane. J Membr Sci. 2012; 415: 718-724.
- 15Celik E, Park H, Choi H, Choi H. Carbon nanotube blended polyethersulfone membranes for fouling control in water treatment. Water Res. 2011; 45(1): 274-282. doi:10.1016/j.watres.2010.07.060
- 16Zhao Y, Yang X, Cheng Z, Lau CH, Ma J, Shao L. Surface manipulation for prevention of migratory viscous crude oil fouling in superhydrophilic membranes. Nat Commun. 2023; 14(1):2679. doi:10.1038/s41467-023-38419-3
- 17Yin J, Zhu G, Deng B. Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification. Desalination. 2016; 379: 93-101. doi:10.1016/j.desal.2015.11.001
- 18Huang J, Zhang K, Wang K, Xie Z, Ladewig B, Wang H. Fabrication of polyethersulfone-mesoporous silica nanocomposite ultrafiltration membranes with antifouling properties. J Membr Sci. 2012; 423: 362-370.
- 19Liang S, Xiao K, Mo Y, Huang X. A novel ZnO nanoparticle blended polyvinylidene fluoride membrane for anti-irreversible fouling. J Membr Sci. 2012; 394: 184-192.
- 20Yan L, Yang X, Li Y, et al. Acid-resistant supramolecular nanofibrous hydrogel membrane with core-shell structure for highly efficient oil/water separation. J Membr Sci. 2023; 679:121705. doi:10.1016/j.memsci.2023.121705
- 21Liu F, Xu Y-Y, Zhu B-K, Zhang F, Zhu L-P. Preparation of hydrophilic and fouling resistant poly(vinylidene fluoride) hollow fiber membranes. J Membr Sci. 2009; 345(1–2): 331-339. doi:10.1016/j.memsci.2009.09.020
- 22Wang N, Ji S, Li J, Zhang R, Zhang G. Poly(vinyl alcohol)-graphene oxide nanohybrid “pore-filling” membrane for pervaporation of toluenein-heptane mixtures. J Membr Sci. 2014; 455: 113-120. doi:10.1016/j.memsci.2013.12.023
- 23Safarpour M, Khataee A, Vatanpour V. Thin film nanocomposite reverse osmosis membrane modified by reduced graphene oxide/TiO2 with improved desalination performance. J Membr Sci. 2015; 489: 43-54. doi:10.1016/j.memsci.2015.04.010
- 24Bolotin KI, Sikes KJ, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008; 146(9–10): 351-355. doi:10.1016/j.ssc.2008.02.024
- 25Zhu Y, Murali S, Cai W, et al. Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater. 2010; 22(35): 3906-3924. doi:10.1002/adma.201001068
- 26Wang Z, Yu H, Xia J, et al. Novel GO-blended PVDF ultrafiltration membranes. Desalination. 2012; 299: 50-54. doi:10.1016/j.desal.2012.05.015
- 27Singh PS, Joshi SV, Trivedi JJ, Devmurari CV, Rao AP, Ghosh PK. Probing the structural variations of thin film composite RO membranes obtained by coating polyamide over polysulfone membranes of different pore dimensions. J Membr Sci. 2006; 278(1–2): 19-25. doi:10.1016/j.memsci.2005.10.039
- 28Khajouei M, Najafi M, Jafari SA. Development of ultrafiltration membrane via in-situ grafting of nano-GO/PSF with anti-biofouling properties. Chem Eng Res des. 2019; 142: 34-43. doi:10.1016/j.cherd.2018.11.033
- 29Rana D, Matsuura T, Lan CQ. Work needed to force the water-air interface down in the re-entrant structured capillary pore. Desalination. 2022; 541:116058. doi:10.1016/j.desal.2022.116058
- 30Chamani H, Matsuura T, Rana D, Lan CQ. Transport characteristics of liquid-gas interface in a capillary membrane pore. J Membr Sci. 2020; 611:118387. doi:10.1016/j.memsci.2020.118387
- 31Rana D, Mandal BM, Bhattacharyya SN. Analogue calorimetric studies of blends of poly(vinyl ester)s and polyacrylates. Macromolecules. 1996; 29(5): 1579-1583. doi:10.1021/ma950954n
- 32Rana D, Mandal BM, Bhattacharyya SN. Analogue calorimetry of polymer blends: poly(styrene-co-acrylonitrile) and poly(phenyl acrylate) or poly(vinyl benzoate). Polymer. 1996; 37(12): 2439-2443. doi:10.1016/0032-3861(96)85356-0