A study of bubble size/shape evolution in microbubble countercurrent contacting flotation column
Corresponding Author
Jikang Han
School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu, 221116 China
Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu, 221116 China
Correspondence
Jikang Han and Yanfeng Li, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China.
Email: [email protected] and [email protected]
Search for more papers by this authorCorresponding Author
Yanfeng Li
School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu, 221116 China
Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu, 221116 China
Correspondence
Jikang Han and Yanfeng Li, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China.
Email: [email protected] and [email protected]
Search for more papers by this authorPeng Chen
School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu, 221116 China
Search for more papers by this authorCorresponding Author
Jikang Han
School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu, 221116 China
Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu, 221116 China
Correspondence
Jikang Han and Yanfeng Li, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China.
Email: [email protected] and [email protected]
Search for more papers by this authorCorresponding Author
Yanfeng Li
School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu, 221116 China
Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu, 221116 China
Correspondence
Jikang Han and Yanfeng Li, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China.
Email: [email protected] and [email protected]
Search for more papers by this authorPeng Chen
School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu, 221116 China
Search for more papers by this authorAbstract
Cationic collectors are widely used in the flotation of iron ore, silicate, oxides, and so forth. At this stage, so much research has been carried out on flotation column cells, but more attention needs to be paid to the hydrodynamic properties in the presence of cationic collectors in cells. In order to study foaming performance and hydrodynamic characteristics in the presence of GE609, the bubble characteristics are studied in an experimental scale flotation column. A high-speed camera recorder is used to take bubbles' images, and the bubble size and shape under different conditions is measured by image analysis. This paper aims to explore the effect of dispersed gas and continuous liquid velocities on the bubble size and aspect ratio at different axial heights in a countercurrent flotation column in the presence and absence of GE609. In the systems, the bubble size distributions and shapes at different axial positions were obtained by using high-speed camera technology in the superficial gas velocity (Ug) ranges of 0.0021–0.0106 m/s and superficial liquid velocity (UL) ranges of 0.00123–0.00209 m/s. Through the comparison with relevant papers and studying the experiment data, the relationship between the Sauter mean diameter and Ug, UL and axial heights have been analyzed by using multiple linear regression and dimensional analysis. The experimental data have been adopted to establish the correlation between the bubble diameter and the dimensionless array, which have been compared with other literature. And the predicted values/results of Weber and Morton number correlation in this work are relatively close to the experimental values.
REFERENCES
- 1Farrokhpay S, Filippov L, Fornasiero D. Flotation of fine particles: a review. Min Proc Ext Met Rev. 2021; 42(7): 473-483. doi:10.1080/08827508.2020.1793140
- 2Harbort G, Clarke D. Fluctuations in the popularity and usage of flotation columns—an overview. Miner Eng. 2017; 100: 17-30. doi:10.1016/j.mineng.2016.09.025
- 3Liu T, Li Y, He S, Chen P, Li Z. Optimization of air parameters in a three-phase fluidized bed flotation column. Powder Technol. 2020; 373: 242-253. doi:10.1016/j.powtec.2020.06.058
- 4Wang H, Yan X, Li D, et al. Recent advances in computational fluid dynamics simulation of flotation: a review. Asia-Pac J Chem Eng. 2021; 16(5):e2704. doi:10.1002/apj.2704
- 5Corona-Arroyo MA, López-Valdivieso A, Laskowski JS, Encinas-Oropesa A. Effect of frothers and dodecylamine on bubble size and gas holdup in a downflow column. Miner Eng. 2015; 81: 109-115. doi:10.1016/j.mineng.2015.07.023
- 6Han J, Liu T, Li Y, et al. Bed hydrodynamics of a new three-phase fluidized bed flotation column with steel ball particles. Miner Eng. 2022; 184:107669. doi:10.1016/j.mineng.2022.107669
- 7Basso A, Hamad FA, Ganesan P. Effects of the geometrical configuration of air-water mixer on the size and distribution of microbubbles in aeration systems. Asia-Pac J Chem Eng. 2019; 13(6):e2259. doi:10.1002/apj.2259
- 8Waters KE, Rowson NA, Fan X, Cilliers JJ. Following the path of hydrophobic and hydrophilic particles in a Denver cell using positron emission particle tracking. Asia-Pac J Chem Eng. 2009; 4(2): 218-225. doi:10.1002/apj.224
- 9Farrokhpay S. The significance of froth stability in mineral flotation—a review. Adv Colloid Interfac. 2011; 166(1-2): 1-7. doi:10.1016/j.cis.2011.03.001
- 10Ge Y, Huang L, Xiong X, Yu Y. Mechanism of a new collector alkyl polyamine ether adsorption on jasper and magnetite. J Cent South Univ. 2014; 5: 1377-1383.
- 11Sarhan AR, Naser J, Brooks G. CFD modeling of bubble column: influence of physico-chemical properties of the gas/liquid phases properties on bubble formation. Sep Purif Technol. 2018; 201: 130-138. doi:10.1016/j.seppur.2018.02.037
- 12Liu L, Zhang H, Yan H, et al. Experimental studies on bubble aspect ratio and corresponding correlations under bubble swarm condition. Chem Eng Sci. 2021; 236:116551. doi:10.1016/j.ces.2021.116551
- 13Tomiyama A, Tamai H, Zun I, Hosokawa S. Transverse migration of single bubbles in simple shear flows. Chem Eng Sci. 2002; 57(11): 1849-1858. doi:10.1016/S0009-2509(02)00085-4
- 14Cao B, Xie Y, Gui W, Wei L, Yang C. Integrated prediction model of bauxite concentrate grade based on distributed machine vision. Miner Eng. 2013; 53: 31-38. doi:10.1016/j.mineng.2013.07.003
- 15Aldrich C, Marais C, Shean BJ, Cilliers JJ. Online monitoring and control of froth flotation systems with machine vision: a review. Int J Miner Process. 2010; 96(1-4): 1-13. doi:10.1016/j.minpro.2010.04.005
- 16Ai M, Xie Y, Xie S, Gui W. Shape-weighted bubble size distribution based reagent predictive control for the antimony flotation process. Chemometr Intell Lab. 2019; 192:103821. doi:10.1016/j.chemolab.2019.103821
- 17Ellingsen K, Risso F. On the rise of an ellipsoidal bubble in water: oscillatory paths and liquid-induced velocity. J Fluid Mech. 2001; 440: 235-268. doi:10.1017/S0022112001004761
- 18Liu L, Yan H, Zhao G. Experimental studies on the shape and motion of air bubbles in viscous liquids. Exp Therm Fluid Sci. 2015; 62: 109-121. doi:10.1016/j.expthermflusci.2014.11.018
- 19Aoyama S, Hayashi K, Hosokawa S, Tomiyama A. Shapes of ellipsoidal bubbles in infinite stagnant liquids. Int J Multiph Flow. 2016; 79: 23-30. doi:10.1016/j.ijmultiphaseflow.2015.10.003
- 20Celata GP, Cumo M, Annibale FD, Marco PD, Tomiyama A, Zovini C. Effect of air injection mode and purity of liquid on bubble rising in two-component systems. Exp Therm Fluid Sci. 2006; 31(1): 37-53. doi:10.1016/j.expthermflusci.2005.08.006
- 21Wellek RM, Agrawal AK, Skelland AHP. Shape of liquid drops moving in liquid media. AIChE J. 1966; 12(5): 854-862. doi:10.1002/aic.690120506
- 22Shi W, Yang J, Li G, Yang X, Zong Y, Cai X. Modelling of breakage rate and bubble size distribution in bubble columns accounting for bubble shape variations. Chem Eng Sci. 2018; 187: 391-405. doi:10.1016/j.ces.2018.05.013
- 23Loth E. Quasi-steady shape and drag of deformable bubbles and drops. Int J Multiph Flow. 2008; 34(6): 523-546. doi:10.1016/j.ijmultiphaseflow.2007.08.010
- 24Besagni G, Inzoli F. Bubble sizes and shapes in a counter-current bubble column with pure and binary liquid phases. Flow Meas Instrum. 2019; 67: 55-82. doi:10.1016/j.flowmeasinst.2019.04.008
- 25Fahad MK, Prakash R, Majumder SK. Dispersion characteristics in a gas-liquid-coal slurry flotation column and its analysis by the velocity distribution model. J Dispers Sci Technol. 2017; 9(9): 1259-1273. doi:10.1080/01932691.2020.1737105
- 26Han J, Wang W, Li R. Study on air holdup characteristics of micro-bubble counter-current contacting flotation column. Physicochem Probl Mi. 2020; 56(4): 665-675. doi:10.37190/ppmp/124232
- 27Zhu H, Valdivieso AL, Zhu J, et al. A study of bubble size evolution in Jameson flotation cell. Chem Eng Res des. 2018; 137: 461-466. doi:10.1016/j.cherd.2018.08.005
- 28Nassif M, Finch JA, Waters KE. Developing critical coalescence concentration curves for industrial process waters using dilution. Miner Eng. 2013; 50: 64-68. doi:10.1016/j.mineng.2013.06.011
- 29Wibawa EJ, Arif W, Okto D, Wiratni B, Indarto D. Hydrodynamic characteristics of the microbubble dissolution in liquid using orifice type microbubble generator. Chem Eng Res des. 2019; 141: 436-448. doi:10.1016/j.cherd.2018.11.017
- 30Prakash R, Majumder SK. Effect of particle size and concentration on bubble size distribution and aspect ratio in a counter-current microstructured bubble column. J Ind Eng Chem. 2020; 90: 105-116. doi:10.1016/j.jiec.2020.07
- 31Gordiychuk A, Svanera M, Benini S, Poesio P. Size distribution and Sauter mean diameter of microbubbles for Venturi type bubble generator. Exp Therm Fluid Sci. 2016; 70: 51-60. doi:10.1016/j.expthermflusci.2015.08.014
- 32Kazakis NA, Mouza AA, Paras SV. Experimental study of bubble formation at metal porous spargers: effect of liquid properties and sparger characteristics on the initial bubble size distribution. Chem Eng J. 2008; 137(2): 265-281. doi:10.1016/j.cej.2007.04.040
- 33Ziegenhein T, Lucas D. Observations on bubble shapes in bubble columns under different flow conditions. Exp Therm Fluid Sci. 2017; 85: 248-256. doi:10.1016/j.expthermflusci.2017.03.009
- 34Ziegenhein T, Lucas D, Besagni G. The bubble shape in contaminated bubbly flows: results for different NaCl concentrations in purified water. ChemEngineering. 2018; 2(2): 18. doi:10.3390/chemengineering2020018
10.3390/chemengineering2020018 Google Scholar
- 35Okawa T, Tanaka T, Kataoka I, Mori M. Temperature effect on single bubble rise characteristics in stagnant distilled water. Int J Heat Mass Tran. 2003; 46(5): 903-913. doi:10.1016/S0017-9310(02)00345-9
- 36Sanada T, Sugihara K, Shirota M, Watanabe M. Motion and drag of a single bubble in super-purified water. Fluid Dyn Res. 2008; 40(7-8): 534-545. doi:10.1016/j.fluiddyn.2007.12.005
- 37Taylor TD, Acrivos A. On the deformation and drag of a falling viscous drop at low Reynolds number. J Fluid Mech. 1964; 18: 464-476.
- 38Moore DW. The velocity of rise of distorted air bubbles in a liquid of small viscosity. J Fluid Mech. 1965; 23(4): 749-766. doi:10.1017/S0022112065001660
- 39Besagni G, Inzoli F, Ziegenhein T, Hessenkemper H, Lucas D. Bubble aspect ratio in dense bubbly flows: experimental studies in low Morton-number systems. J Phys Conf Series. 2017; 923:012014. doi:10.1088/17426596/923/1/012014
10.1088/17426596/923/1/012014 Google Scholar
- 40Zhou Y, Zhao C, Bo H. Analyses and modified models for bubble shape and drag coefficient covering a wide range of working conditions. Int J Multiphas Flow. 2020; 127:103265. doi:10.1016/j.ijmultiphaseflow.2020.103265