Catalytic dehydrogenation of natural terpenes via CuPd alloy nanoparticles generated on mesoporous graphitic carbon nitride
Ahsen Sare Yalın
Department of Chemistry, College of Sciences, Koç University, 34450 Sarıyer, Istanbul, Turkey
Koç University Tüpraş Energy Center (KUTEM), 34450 Sarıyer, Istanbul, Turkey
Search for more papers by this authorBuse Sündü
Department of Chemistry, College of Sciences, Koç University, 34450 Sarıyer, Istanbul, Turkey
Koç University Tüpraş Energy Center (KUTEM), 34450 Sarıyer, Istanbul, Turkey
Search for more papers by this authorMelek Sermin Özer
Department of Chemistry, College of Sciences, Koç University, 34450 Sarıyer, Istanbul, Turkey
Search for more papers by this authorAyoub Abdelkader Mekkaoui
Laboratoire des Sciences des Matériaux, Mathématiques et Environnement, Université Sultan Moulay Slimane, Faculté Polydisciplinaire de Khouribga, B. P 145, Khouribga, 25000 Morocco
Search for more papers by this authorSoufiane El Houssame
Laboratoire des Sciences des Matériaux, Mathématiques et Environnement, Université Sultan Moulay Slimane, Faculté Polydisciplinaire de Khouribga, B. P 145, Khouribga, 25000 Morocco
Search for more papers by this authorCorresponding Author
Önder Metin
Department of Chemistry, College of Sciences, Koç University, 34450 Sarıyer, Istanbul, Turkey
Koç University Tüpraş Energy Center (KUTEM), 34450 Sarıyer, Istanbul, Turkey
Koç University Surface Science and Technology Center (KUYTAM), 34450 Sarıyer, Istanbul, Turkey
Correspondence
Prof. Önder Metin, Department of Chemistry, College of Sciences, Koç University, 34450 Sarıyer, Istanbul, Turkey.
Email: [email protected]
Search for more papers by this authorAhsen Sare Yalın
Department of Chemistry, College of Sciences, Koç University, 34450 Sarıyer, Istanbul, Turkey
Koç University Tüpraş Energy Center (KUTEM), 34450 Sarıyer, Istanbul, Turkey
Search for more papers by this authorBuse Sündü
Department of Chemistry, College of Sciences, Koç University, 34450 Sarıyer, Istanbul, Turkey
Koç University Tüpraş Energy Center (KUTEM), 34450 Sarıyer, Istanbul, Turkey
Search for more papers by this authorMelek Sermin Özer
Department of Chemistry, College of Sciences, Koç University, 34450 Sarıyer, Istanbul, Turkey
Search for more papers by this authorAyoub Abdelkader Mekkaoui
Laboratoire des Sciences des Matériaux, Mathématiques et Environnement, Université Sultan Moulay Slimane, Faculté Polydisciplinaire de Khouribga, B. P 145, Khouribga, 25000 Morocco
Search for more papers by this authorSoufiane El Houssame
Laboratoire des Sciences des Matériaux, Mathématiques et Environnement, Université Sultan Moulay Slimane, Faculté Polydisciplinaire de Khouribga, B. P 145, Khouribga, 25000 Morocco
Search for more papers by this authorCorresponding Author
Önder Metin
Department of Chemistry, College of Sciences, Koç University, 34450 Sarıyer, Istanbul, Turkey
Koç University Tüpraş Energy Center (KUTEM), 34450 Sarıyer, Istanbul, Turkey
Koç University Surface Science and Technology Center (KUYTAM), 34450 Sarıyer, Istanbul, Turkey
Correspondence
Prof. Önder Metin, Department of Chemistry, College of Sciences, Koç University, 34450 Sarıyer, Istanbul, Turkey.
Email: [email protected]
Search for more papers by this authorAhsen Sare Yalın and Buse Sündü contributed equally to this work.
Funding information: The Scientific and Technological Research Council of Turkey (TUBITAK), Grant/Award Number: 119Z199; The Moroccan Centre National pour la Recherche Scientifique et Technique (CNRST)
Abstract
A facile wet-chemical protocol for the synthesis of bimetallic CuPd alloy nanoparticles (NPs) anchored on mesoporous graphitic carbon nitride (m-gCN), serving as both stabilizer and support material, was presented herein. The presented protocol allowed to synthesize nearly monodisperse CuPd alloy NPs with an average particle size of 3.9 ± 0.9 nm without use of any additional surfactants and to prepare CuPd/m-gCN nanocatalysts with different Cu/Pd compositions (Cu25Pd75/m-gCN, Cu35Pd65/m-gCN, Cu16Pd74/m-gCN, Cu32Pd68/m-gCN, Cu10Pd90/m-gCN, and Cu50Pd50/m-gCN). After the detailed characterization of CuPd/m-gCN nanocatalysts, they were utilized as catalysts in the dehydrogenation of terpenes. Among all tested nanocatalysts, Cu50Pd50/m-gCN showed the highest activity in terms of the product yields within the same reaction time. Various parameters influencing the catalytic activity of Cu50Pd50/m-gCN were studied using himachalene as a model substrate and the optimum conditions were determined. Under the optimized reaction conditions, the catalytic application of Cu50Pd50/m-gCN nanocatalysts was extended to nine different terpenes and the corresponding products were obtained in high conversion yields (>90%) under mild conditions. A reusability test showed that Cu50Pd50/m-gCN nanocatalysts can be re-used up to four cycles without significant loss in their initial activity.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
Filename | Description |
---|---|
aoc6943-sup-0001.docxWord 2007 document , 7.1 MB |
Table S1. The calculation of mass and mole fraction of Cu50Pd50/ m-gCN nanocatalysts in the dehydrogenation of himachalane. Table S2. Dehydrogenation of himachalene with various heterogeneous catalytic systems. Figure S1. The reaction set up of CuPd/m-gCN synthesized via surfactant-assisted chemical reduction method under Ar(g) flow. Figure S2. XRD patterns of CuPd/m-gCN nanocatalysts prepared by using a) different Cu precursors in the presence of K2PdCl4, b) different Pd precursors in the presence of Cu(acac)2 Figure S3. TEM images of CuPd/m-gCN nanocatalysts prepared by using Cu(acac)2 precursor in the presence of different Pd precursors a) Pd(OAc)2, b) PdBr2, c) Pd(acac)2, d) K2PdCl Figure S4. XRD pattern of pristine m-gCN Figure S5. a) XRD pattern and b) TEM image of Pd/m-gCN nanocatalysts Figure S6. Representative TEM images of Cu35Pd65/m-gCN nanocatalysts Figure S7. a) 4-runs reusability test of Cu50Pd50/m-gCN nanocatalysts, b) XRD patterns of fresh Cu50Pd50/m-gCN and Cu50Pd50/m-gCN nanocatalysts after the 4th cycles, c) TEM images of Cu50Pd50/m-gCN nanocatalysts after the 4th run. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1P. Munnik, P. E. de Jongh, K. P. de Jong, Chem. Rev. 2015, 115, 6687. https://doi.org/10.1021/cr500486u
- 2F. Huang, F. Wang, Q. Hu, L. Tang, D. Xu, Y. Fang, W. Zhang, Appl. Organomet. Chem. 2021, 35, e6236. https://doi.org/10.1002/aoc.6236
- 3A. Z. Fadhel, P. Pollet, C. L. Liotta, C. A. Eckert, Molecules 2010, 15, 8400. https://doi.org/10.3390/molecules15118400
- 4L. Liu, A. Corma, Chem. Rev. 2018, 118, 4981. https://doi.org/10.1021/acs.chemrev.7b00776
- 5R. A. Van Santen, Acc. Chem. Res. 2009, 42, 57. https://doi.org/10.1021/ar800022m
- 6A. Cao, R. Lu, G. Veser, Phys. Chem. Chem. Phys. 2010, 12, 13499. https://doi.org/10.1039/c0cp00729c
- 7L. Shi, A. Wang, T. Zhang, B. Zhang, D. Su, H. Li, Y. Song, J. Phys. Chem. C 2013, 117, 12526. https://doi.org/10.1021/jp4013202
- 8J. Yin, Chem. Rev. 2007, 107, 133. https://doi.org/10.1021/cr0505674
- 9A. Kaur, G. Kaur, P. P. Singh, S. Kaushal, Int. J. Hydrogen Energy 2021, 46, 15820. https://doi.org/10.1016/j.ijhydene.2021.02.037
- 10A. C. Balazs, T. Emrick, T. P. Russell, Science 2006, 314(80), 1107. https://doi.org/10.1126/science.1130557
- 11J. Martínez-Laguna, A. Caballero, P. J. Pérez, Adv. Synth. Catal. 2021, 363, 1740. https://doi.org/10.1002/adsc.202001325
- 12X. Long, J. Li, S. Xiao, K. Yan, Z. Wang, H. Chen, S. Yang, Angew. Chem. Int. Ed. 2014, 53, 7584. https://doi.org/10.1002/anie.201402822
- 13F. Khan, M. S. Khan, S. Kamal, M. Arshad, S. I. Ahmad, S. A. A. Nami, J. Mater. Chem. C 2020, 8, 15940. https://doi.org/10.1039/D0TC03684F
- 14D. J. Morgan, Surf. Sci. Spectra 2021, 28, 014007. https://doi.org/10.1116/6.0001083
- 15A. A. Mekkaoui, S. Jennane, A. Aberkouks, B. Boualy, A. Mehdi, M. Ait Ali, L. El Firdoussi, S. El Houssame, Appl. Organomet. Chem. 2019, 33, e5117. https://doi.org/10.1002/aoc.5117
- 16A. A. Mekkaoui, A. Aberkouks, L. Fkhar, M. Ait Ali, L. El Firdoussi, S. El Houssame, Appl. Organomet. Chem. 2020, 34, e5917. https://doi.org/10.1002/aoc.5917
- 17H. Orfi, A. A. Mekkaoui, B. Sündü, M. Laayati, S. A. Labyad, L. El Firdoussi, Ö. Metin, S. El Houssame, J. Inorg. Organomet. Polym. Mater. 2022, 32, 2192. https://doi.org/10.1007/s10904-022-02262-8
- 18K. Xue, Y. Mo, B. Long, W. Wei, C. Shan, S. Guo, L. Niu, InfoMat. 2022, e12296. https://doi.org/10.1002/inf2.12296
10.1002/inf2.12296 Google Scholar
- 19J. D. Caldwell, I. Aharonovich, G. Cassabois, J. H. Edgar, B. Gil, D. N. Basov, Nat. Rev. Mater. 2019, 4, 552. https://doi.org/10.1038/s41578-019-0124-1
- 20Q. Yang, Q. Xu, H.-L. Jiang, Chem. Soc. Rev. 2017, 46, 4774. https://doi.org/10.1039/C6CS00724D
- 21B. Nişancı, M. Turgut, M. Sevim, Ö. Metin, ChemistrySelect 2017, 2, 6344. https://doi.org/10.1002/slct.201701188
- 22Y. Wang, X. Wang, M. Antonietti, Angew. Chem. Int. Ed. 2012, 51, 68. https://doi.org/10.1002/anie.201101182
- 23M. Aksoy, Ö. Metin, ACS Appl. Nano Mater. 2020, 3, 6836. https://doi.org/10.1021/acsanm.0c01208
- 24E. Kalay, S. Cetin, S. Kolemen, Ö. Metin, New J. Chem. 2020, 44, 6714. https://doi.org/10.1039/D0NJ00546K
- 25Z. Chen, S. Mitchell, E. Vorobyeva, R. K. Leary, R. Hauert, T. Furnival, Q. M. Ramasse, J. M. Thomas, P. A. Midgley, D. Dontsova, M. Antonietti, S. Pogodin, N. López, J. Pérez-Ramírez, Adv. Funct. Mater. 2017, 27, 1605785. https://doi.org/10.1002/adfm.201605785
- 26N. Toshima, T. Yonezawa, New J. Chem. 1998, 22, 1179. https://doi.org/10.1039/a805753b
- 27H. Kahri, M. Sevim, Ö. Metin, Nano Res. 2017, 10, 1627. https://doi.org/10.1007/s12274-016-1345-x
- 28X. Liu, D. Wang, Y. Li, Nano Today 2012, 7, 448. https://doi.org/10.1016/j.nantod.2012.08.003
- 29Ö. Metin, S. F. Ho, C. Alp, H. Can, M. N. Mankin, M. S. Gültekin, M. Chi, S. Sun, Nano Res. 2013, 6, 10. https://doi.org/10.1007/s12274-012-0276-4
- 30G. Sharma, A. Kumar, S. Sharma, M. Naushad, R. Prakash Dwivedi, Z. A. Alothman, G. T. Mola, J. King Saud Univ. Sci. 2019, 31, 257. https://doi.org/10.1016/j.jksus.2017.06.012
- 31I. Mustieles Marin, J. M. Asensio, B. Chaudret, ACS Nano 2021, 15, 3550. https://doi.org/10.1021/acsnano.0c09744
- 32R. Paduch, M. Kandefer-Szerszeń, M. Trytek, J. Fiedurek, Arch. Immunol. Ther. Exp. (Warsz.) 2007, 55, 315. https://doi.org/10.1007/s00005-007-0039-1
- 33D. A. Hashim, A. M. Alwan, M. F. Jawad, Int. J. Nanoelectron. Mater. 2018, 11, 461.
- 34A. Aberkouks, A. A. Mekkaoui, B. Boualy, S. El Houssame, M. Ait Ali, L. El Firdoussi, Adv. Mater. Sci. Eng. 2018, 2018, 1. https://doi.org/10.1155/2018/2716435
- 35A. Aberkouks, A. A. Mekkaoui, B. Boualy, S. EL Houssame, M. Ait Ali, L. El Firdoussi, Mater. Today Proc. 2019, 13, 453. https://doi.org/10.1016/j.matpr.2019.04.001
- 36A. Aberkouks, A. A. Mekkaoui, M. Ait Ali, L. El Firdoussi, S. El Houssame, J. Chem. 2020, 2020, 1. https://doi.org/10.1155/2020/1241952
- 37W. F. Erman, Chemistry of the monoterpenes: an encyclopedic handbook, Marcel Dekker, New York 1985.
- 38B. M. Fraga, Nat. Prod. Rep. 2002, 19, 650. https://doi.org/10.1039/b108977n
- 39F. Temelli, R. J. Braddock, C. S. Chen, S. Nagy, Supercritical Carbon Dioxide Extraction of Terpenes from Orange Essential Oil, in 1988 109 10.1021/bk-1988-0366.ch006.
- 40A. A. Mekkaoui, M. Laayati, H. Orfi, L. El Firdoussi, S. El Houssame, J. Chem. 2020, 2020, 1. https://doi.org/10.1155/2020/2563634
- 41A. A. Mekkaoui, H. Ben El Ayouchia, H. Anane, R. Chahboun, L. El Firdoussi, S. El Houssame, J. Mol. Struct. 2021, 1235, 130221. https://doi.org/10.1016/j.molstruc.2021.130221
- 42 Ullmann's Encyclopedia of Industrial Chemistry, Wiley, Weinheim, Germany 2000 10.1002/14356007.
- 43B. N. Joshi, R. Seshadri, K. K. Chakravarti, S. C. Bhattacharyya, Tetrahedron 1964, 20, 2911. https://doi.org/10.1016/s0040-4020(01)98512-6
- 44J. B. Bredenberg, H. Erdtman, K.-I. Persson, H. Dam, B. Sjöberg, J. Toft, Acta Chem. Scand. 1961, 15, 685. https://doi.org/10.3891/acta.chem.scand.15-0685
- 45T. C. Joseph, S. Dev, Tetrahedron. 1968, 24, 3809. https://doi.org/10.1016/S0040-4020(01)92589-X
- 46R. C. Pandey, S. Dev, Tetrahedron 1968, 24, 3829. https://doi.org/10.1016/S0040-4020(01)92590-6
- 47G. Mehta, S. K. Kapoor, J. Org. Chem. 1974, 39, 2618. https://doi.org/10.1021/jo00931a038
- 48B. Abouhamza, S. Allaoud, A. Karim, Molecules 2001, 6, M236. https://doi.org/10.3390/M236
- 49G. H. Jimenez-Aleman, T. Schöner, A. L. Montero-Alejo, W. Brandt, W. Boland, Arkivoc 2012, (2012), 371. https://doi.org/10.3998/ark.5550190.0013.326
- 50A. Chaudhary, S. Sood, P. Das, P. Kaur, I. Mahajan, A. Gulati, B. Singh, EXCLI j. 2014, 13, 1216. https://doi.org/10.17877/DE290R-7417
- 51B. A. Leita, A. C. Warden, N. Burke, M. S. O'Shea, D. Trimm, Green Chem. 2010, 12, 70. https://doi.org/10.1039/b916460j
- 52P. A. Weyrich, W. F. Hölderich, Appl. Catal. A. Gen. 1997, 158, 145. https://doi.org/10.1016/S0926-860X(96)00383-3
- 53D. Buhl, P. A. Weyrich, W. M. H. Sachtler, W. F. Hölderich, Appl. Catal. A. Gen. 1998, 171, 1. https://doi.org/10.1016/S0926-860X(98)00039-8
- 54D. Buhl, D. M. Roberge, W. F. Hölderich, Appl. Catal. A. Gen. 1999, 188, 287. https://doi.org/10.1016/S0926-860X(99)00219-7
- 55R. J. Grau, P. D. Zgolicz, C. Gutierrez, H. A. Taher, J. Mol. Catal. A: Chem. 1999, 148, 203. https://doi.org/10.1016/S1381-1169(99)00108-9
- 56A. M. Doyle, S. K. Shaikhutdinov, H. J. Freund, J. Catal. 2004, 223, 444. https://doi.org/10.1016/j.jcat.2004.02.020
- 57P. Benavente, F. Cárdenas-Lizana, M. A. Keane, Cat. Com. 2017, 96, 37. https://doi.org/10.1016/j.catcom.2017.03.026
- 58D. Briggs, in Handbook of X-ray Photoelectron Spectroscopy, (Eds: C. D. Wanger, W. M. Riggs, L. E. Davis, J. F. Moulder, G. E. Muilenberg), Perkin-Elmer Corp, Physical Electronics Division, Eden Prairie, Minnesota, USA 1979 190 pp. $195, Surf. Interface Anal. 3 (1981) v–v https://doi.org/10.1002/sia.740030412
- 59Y. Wang, Q. He, J. Guo, H. Wei, K. Ding, H. Lin, S. Bhana, X. Huang, Z. Luo, T. D. Shen, S. Wei, Z. Guo, ChemElectroChem 2015, 2, 559. https://doi.org/10.1002/celc.201402378
- 60C. Zhou, J. A. Szpunar, X. Cui, ACS Appl. Mater. Interfaces 2016, 8, 15232. https://doi.org/10.1021/acsami.6b02607
- 61H. Saikia, B. J. Borah, Y. Yamada, P. Bharali, J. Colloid Interface Sci. 2017, 486, 46. https://doi.org/10.1016/j.jcis.2016.09.056
- 62A. J. Medford, A. Vojvodic, J. S. Hummelshøj, J. Voss, F. Abild-Pedersen, F. Studt, T. Bligaard, A. Nilsson, J. K. Nørskov, J. Catal. 2015, 328, 36. https://doi.org/10.1016/j.jcat.2014.12.033
- 63M. Retajczyk, A. Wróblewska, Catalysts. 2019, 9, 508. https://doi.org/10.3390/catal9060508