Synthesis, spectroscopic studies, and single-crystal structures of two 3-D supramolecular zinc(II) and nickel(II) complexes containing thiazole ring: Antimicrobial assays, time-dependent density functional theory calculations, and Hirshfeld surface analysis
Cheng-Guo Li
School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, China
Search for more papers by this authorHong-Li An
School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, China
Search for more papers by this authorCorresponding Author
Lan-Qin Chai
School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, China
Correspondence
Lan-Qin Chai, School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
Email: [email protected] and [email protected]
Search for more papers by this authorCheng-Guo Li
School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, China
Search for more papers by this authorHong-Li An
School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, China
Search for more papers by this authorCorresponding Author
Lan-Qin Chai
School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, China
Correspondence
Lan-Qin Chai, School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
Email: [email protected] and [email protected]
Search for more papers by this authorFunding information: Fundamental Research Funds of Gansu Province Universities, Grant/Award Number: 214152; Foundation of a Hundred Youth Talents Training Program of Lanzhou Jiaotong University, Grant/Award Number: 152022
Abstract
Two novel complexes [Zn(L)2·(NO3)2] (1) and [Ni(L)2·2H2O]·2CH3OH·(NO3)2 (2) (L = 2-(2-thiazolyl)-4-methyl-1,2-dihydroquinazoline-N3-oxide) were synthesized successfully and characterized by elemental analysis, as well as various spectroscopic techniques. Specifically, the photoluminescence behavior of complex 1 was explored in different solvents. The structural characterization of both complexes has been determined single-crystal X-ray diffraction. It revealed that the metals in 1 and 2 are chelated by two L ligands in centro-symmetrically fashion and the complexes are counterbalanced by nitrate ions which act as coordinating species in 1, while two water molecules complete the Ni coordination sphere in 2. In the crystal structures, the adjacent molecules of complex 1 disclosed a ladder-like 2-D network and 3-D supramolecular self-assembly. Simultaneously, an infinite 1-D chain, 2-D layered skeleton, and even meter-shaped 3-D network of 2 was governed by molecular interactions (H–bonds, C–H⋯π). Most strikingly, the research of antibacterial activity proved that two complexes had good activity against two standard bacteria strains. To ascertain deeply the optimum geometric configurations and detect the frontier molecular orbital energy gaps, density functional theory (DFT) calculations were also investigated. Additionally, analyses of Hirshfeld surfaces (HS) and electrostatic potential (ESP) were also performed to quantify the presence of diverse noncovalent interactions.
CONFLICTS OF INTEREST
There are no conflicts to declare.
Open Research
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available in the supporting information of this article.
Supporting Information
Filename | Description |
---|---|
aoc6918-sup-0001-Supplementary Material.docxWord 2007 document , 164.1 KB |
Figure S1. Infrared spectrum of L and 1 and 2. Table S1. Hydrogen bonds distances (Å) and angles (º) of 1 Table S2. C–X···π bond distances (Å) and angles (º) of 1 Table S3. π···π interaction distances (Å) and angles (º) of 1 Table S4. Hydrogen bonding distances (Å) and angles (º) of 2 Table S5. C–X···π bond distances (Å) and angles (º) of 2 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1S. Realista, P. Ramgi, B. P. Cardoso, A. I. Melato, A. S. Viana, M. J. Calhorda, P. N. Martinho, Dalton Trans. 2016, 45, 14725.
- 2a) B. Souri, P. Hayati, A. R. Rezvani, J. Janczak, Polyhedron 2018, 154, 443; b) Y. Pankratova, D. Aleshin, I. Nikovskiy, V. Novikov, Y. Nelyubina, Inorg. Chim. Acta 2020, 59, 7700.
- 3S. S. Razi, Y. H. Koo, W. Kim, W. B. Yang, Z. J. Wang, H. Gobeze, F. D'Souza, J. Z. Zhao, D. Kim, Inorg. Chem. 2018, 57, 4877.
- 4a) S. Altürk, O. Tamer, D. Avc, Y. Atalay, J. Organomet. Chem. 2015, 797, 110; b) M. Aghaee, K. Mohammadi, P. Hayati, S. Ahmadi, F. Yazdian, A. Gutierrez, S. Rouhani, T. A. M. Msagati, J. Mol. Struct. 2021, 1228, 129434.
- 5M. Yıldız, N. Demir, H. Ünver, N. Sahiner, Sens. Actuators B 2017, 252, 55.
- 6a) Z. Ma, L. Wei, E. C. B. A. Alegria, L. M. D. R. S. Martins, M. F. C. Guedes da Silva, A. J. L. Pombeiro, Dalton Trans. 2014, 43, 4048; b) A. J. Gao, F. F. Li, Z. Xu, C. C. Ji, J. Gu, Y. H. Zhou, Dalton Trans. 2022, 51, 2567.
- 7D. S. Nesterov, E. N. Chygorin, V. N. Kokozay, V. V. Bon, R. Boča, Y. N. Kozlov, L. S. Shul'pina, J. Jezierska, A. Ozarowski, A. J. L. Pombeiro, G. B. Shul'pin, Inorg. Chem. 2012, 51, 9110.
- 8G. Sivaraman, M. Iniya, T. Anand, N. G. Kotla, O. Sunnapu, S. Singaravadivel, A. Gulyani, D. Chellappa, Coord. Chem. Rev. 2018, 357, 50.
- 9a) X. Y. Zhang, D. Q. Xiong, P. K. Fu, M. Yun, Q. L. Yang, M. M. Jia, X. Y. Dong, Appl. Organomet. Chem. 2021. https://doi.org/10.1002/aoc.6431; b) X. Y. Zhang, Q. L. Yang, M. Yun, C. D. Si, N. An, M. M. Jia, J. C. Liu, X. Y. Dong, Acta Crystallogr. 2020, B76, 1001.
- 10a) H. Pérez, A. D. Santo, O. E. Piro, G. A. Echeverría, M. González, A. B. Altabef, R. M. Gomila, A. Frontera, D. M. Gil, Dalton Trans. 2021, 50, 17029; b) X. Q. Song, P. P. Liu, Y. A. Liu, J. J. Zhou, X. L. Wang, Dalton Trans. 2016, 45, 8154.
- 11a) I. Székács, P. Tokarz, R. Horvath, K. Kovács, A. Kubas, M. Shimura, J. Brasun, V. Murzin, W. Caliebe, Z. Szewczuk, A. Paluch, L. Wojnárovits, T. Tóth, J. S. Pap, Ł. Szyrwiel, Chem. Biol. Interact. 2019, 306, 78; b) M. J. Soltanian Fard, P. Hayati, A. Firoozadeh, J. Janczak, Ultrason. Sonochem. 2017, 37, 286.
- 12a) L. Q. Chai, J. J. Huang, H. S. Zhang, Y. L. Zhang, J. Y. Zhang, Y. X. Li, Spectrochim. Acta a 2014, 131, 526; b) L. Q. Chai, H. S. Zhang, J. J. Huang, Y. L. Zhang, Spectrochim. Acta a 2015, 137, 661.
- 13K. Gopalaiah, A. Saini, A. Devi, Org. Biomol. Chem. 2017, 15, 5781.
- 14a) W. R. Luo, Q. C. Mu, W. W. Qiu, T. Liu, F. Yang, X. F. Liu, J. Tang, Tetrahedron 2011, 67, 7090; b) R. Alonso, A. Caballero, P. J. Campos, D. Sampedro, M. A. Rodríguez, Tetrahedron 2010, 66, 4469.
- 15N. Rashidi, M. J. Soltanian Fard, P. Hayati, J. Janczak, F. Yazdian, S. Rouhani, T. A. M. Msagati, J. Mol. Struct. 2021, 1231, 129947.
- 16S. Tadesse, M. Yu, L. B. Mekonnen, F. Lam, S. Islam, K. Tomusange, M. H. Rahaman, B. Noll, S. K. C. Basnet, T. Teo, H. Albrecht, R. Milne, S. Wang, J. Med. Chem. 1892, 2017, 60, 1892.
- 17P. Bera, P. Brandāo, G. Mondal, A. Santra, A. Jana, R. B. Mokhamatam, S. K. Manna, T. K. Mandal, P. Bera, Polyhedron 2019, 159, 436.
- 18N. Raman, T. Chandrasekar, G. Kumaravel, L. Mitu, Appl. Organomet. Chem. 2017, 32. https://doi.org/10.1002/aoc.3922
- 19a) L. Q. Chai, L. J. Tang, K. Y. Zhang, J. Y. Zhang, H. S. Zhang, Appl. Organomet. Chem. 2017, 31. https://doi.org/10.1002/aoc.3786; b) L. Q. Chai, L. Zhou, K. Y. Zhang, H. S. Zhang, Appl. Organomet. Chem. 2018, 32. https://doi.org/10.1002/aoc.4576
- 20a) L. Q. Chai, K. H. Mao, J. Y. Zhang, K. Y. Zhang, H. S. Zhang, Inorg. Chim. Acta 2017, 457, 34; b) L. Q. Chai, J. J. Huang, J. Y. Zhang, Y. X. Li, J. Coord. Chem. 2015, 68, 1224.
- 21a) L. Y. Xu, Y. M. Chai, C. G. Li, L. Q. Chai, Appl. Organomet. Chem. 2021. https://doi.org/10.1002/aoc.6279; b) L. Q. Chai, Q. Hu, K. Y. Zhang, L. C. Chen, Y. X. Li, H. S. Zhang, Appl. Organomet. Chem. 2018, 32. https://doi.org/10.1002/aoc.4426
- 22G. W. T. M. J. Frisch, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, O. Y. Stratmann, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, J. B. F. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian Inc., Gaussian 09, Revision A.01 ed, Wallingford, CT 2009.
- 23C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
- 24A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
- 25R. N. Patel, Y. Singh, Y. P. Singh, R. J. Butcher, J. Coord. Chem. 2016, 69, 2377.
- 26R. Bauernschmitt, R. Ahlrichs, Chem. Phys. Lett. 1996, 256, 454.
- 27a) R. E. Stratmann, G. E. Scuseria, M. J. Frisch, J. Chem. Phys. 1998, 109, 8218; b) M. E. Casida, C. Jamorski, K. C. Casida, D. R. Salahub, J. Chem. Phys. 1998, 108, 4439.
- 28a) M. Cossi, V. Barone, J. Chem. Phys. 2001, 115, 4708; b) M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Comput. Chem. 2003, 24, 669.
- 29a) T. Lu, F. W. Chen, J. Comput. Chem. 2012, 33, 580; b) T. Lu, F. W. Chen, J. Mol. Graph. Model. 2012, 38, 314.
- 30O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339.
- 31G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112.
- 32L. Palatinus, S. J. Prathapa, S. van Smaalen, J. Appl. Cryst. 2012, 45, 575.
- 33D. González, R. Arrué, E. M. Cea, R. Arancibia, P. Hamon, O. Cador, T. Roisnel, J. R. Hamon, N. Novoa, Eur. J. Inorg. Chem. 2018, 2018, 4720.
- 34S. M. Soliman, S. E. Elsilk, A. El-Faham, Inorg. Chim. Acta 2020, 508. https://doi.org/10.1016/j.ica.2020.119627
- 35a) S. S. Zheng, W. K. Dong, Y. Zhang, L. Chen, Y. J. Ding, New J. Chem. 2017, 41, 4966; b) W. K. Dong, S. J. Xing, Y. X. Sun, L. Zhao, L. Q. Chai, X. H. Gao, J. Coord. Chem. 2012, 65, 1212.
- 36P. K. Bhaumik, A. Banerjee, T. Dutta, S. Chatterjee, A. Frontera, S. Chattopadhyay, CrstEngComm 2020, 22, 2970.
- 37C. H. Junges, L. C. Dresch, M. T. da Costa, B. Tirloni, O. L. Casagrande Jr., Appl. Organomet. Chem. 2019, 33. https://doi.org/10.1002/aoc.4887
- 38a) W. K. Dong, W. Du, X. Y. Zhang, G. Li, X. Y. Dong, Spectrochim. Acta a 2014, 132, 588; b) X. Y. Li, C. Liu, L. Gao, Y. X. Sun, Y. Zhang, W. K. Dong, Polyhedron 2018, 155, 320.
- 39M. Salehi, F. Rahimifar, M. Kubicki, A. Asadi, Inorg. Chim. Acta 2016, 443, 28.
- 40a) Y. H. Zhou, L. Q. Chen, J. Tao, J. L. Shen, D. Y. Gong, R. R. Yun, Y. Cheng, J. Inorg. Biochem. 2016, 163, 176; b) Y. Cheng, F. F. Sun, Y. H. Zhou, JOL 2018, 197, 376.
- 41a) L. Q. Chai, Q. Hu, K. Y. Zhang, L. Zhou, J. J. Huang, JOL 2018, 203, 234; b) L. Q. Chai, G. Liu, Y. L. Zhang, J. J. Huang, J. F. Tong, J. Coord. Chem. 2013, 66, 3926.
- 42F. A. Saad, Appl. Organomet. Chem. 2018, 32. https://doi.org/10.1002/aoc.4352
- 43A. B. Deilami, M. Salehi, A. Arab, A. Amiri, Inorg. Chim. Acta 2018, 476, 93.
- 44a) T. Z. Yu, Z. Y. Zhu, Y. J. Bao, Y. L. Zhao, X. X. Liu, H. Zhang, Dyes Pigm. 2017, 147, 260; b) X. X. Liu, Y. Liu, T. Z. Yu, W. M. Su, Y. Y. Niu, Y. M. Li, Y. L. Zhao, H. Zhang, Inorg. Chem. Front. 2018, 5, 2321.
- 45C. J. Dhanaraj, J. Johnson, J. Joseph, R. S. Joseyphus, J. Coord. Chem. 2013, 66, 1416.
- 46a) L. Q. Chai, L. J. Tang, L. C. Chen, J. J. Huang, Polyhedron 2017, 122, 228; b) L. Zhou, Q. Hu, L. Q. Chai, K. H. Mao, H. S. Zhang, Polyhedron 2019, 158, 102.
- 47a) D. Avcı, Y. Saeedi, A. Başogğlu, N. Dege, S. Altürk, Ö. Tamer, Y. Atalay, Appl. Organomet. Chem. 2020, 35. https://doi.org/10.1002/aoc.6125; b) Y. M. Chai, C. G. Li, X. F. Zhang, L. Q. Chai, Appl. Organomet. Chem. 2022. https://doi.org/10.1002/aoc.6682
- 48P. Yang, H. Chen, Z. Z. Wang, L. L. Zhang, D. D. Zhang, Q. S. Shi, X. B. Xie, J. Inorg. Biochem. 2020, 213. https://doi.org/10.1016/j.jinorgbio.2020.111248
- 49K. Das, A. Jana, S. Konar, S. Chatterjee, T. K. Mondal, A. K. Barik, S. K. Kar, J. Mol. Struct. 2013, 1048, 98.
- 50a) S. Roy, A. Bauza, A. Frontera, F. Schaper, R. Banik, A. Purkayastha, B. M. Reddy, B. Sridhar, M. G. B. Drew, S. K. Das, S. Das, Inorg. Chim. Acta 2016, 440, 38; b) H. B. Zhang, X. F. Zhang, L. Q. Chai, L. J. Tang, H. S. Zhang, Inorg. Chim. Acta 2020, 507. https://doi.org/10.1016/j.ica.2020.119610
- 51J. L. Zhou, L. Guo, W. D. Yu, Z. H. Zhang, Y. Wang, J. Yan, Inorg. Chem. Commun. 2019, 99, 189.
- 52Z. Kowser, H. Tomiyasu, X. K. Jiang, U. Rayhan, C. Redshaw, T. Yamato, New J. Chem. 2015, 39, 4055.
- 53a) L. Q. Chai, C. G. Li, Y. M. Chai, L. Zhou, J. Mol. Struct. 2022, 1266. https://doi.org/10.1016/j.molstruc.2022.133554; b) H. S. Zhang, K. Y. Zhang, L. C. Chen, Y. X. Li, L. Q. Chai, J. Mol. Struct. 2017, 1145, 32.
- 54a) A. K. Ghosh, M. Mitra, A. Fathima, H. Yadav, A. R. Choudhury, B. U. Nair, R. Ghosh, Polyhedron 2016, 107, 1; b) L. Q. Chai, K. Y. Zhang, L. J. Tang, J. Y. Zhang, H. S. Zhang, Polyhedron 2017, 130, 100.
- 55G. Kumaravel, P. P. Utthra, N. Raman, Bioorg. Chem. 2018, 77, 269.
- 56A. K. Parhi, Y. Z. Zhang, K. W. Saionz, P. Pradhan, M. Kaul, K. Trivedi, D. S. Pilch, E. J. LaVoie, Bioorg. Med. Chem. Lett. 2013, 23, 4968.
- 57a) L. Q. Chai, Y. X. Li, L. C. Chen, J. Y. Zhang, J. J. Huang, Inorg. Chim. Acta 2016, 444, 193; b) Q. Hu, Y. H. Yue, L. Q. Chai, L. J. Tang, J. Mol. Struct. 2019, 1197, 508.
- 58N. Venkatesh, B. Naveen, A. Venugopal, G. Suresh, V. Mahipal, P. Manojkumar, T. Parthasarathy, J. Mol. Struct. 2019, 1196, 462.
- 59a) Y. H. Zhou, X. W. Liu, L. Q. Chen, S. Q. Wang, Y. Cheng, Polyhedron 2016, 117, 788; b) K. Zhang, X. Y. Cao, Z. Y. Zhang, Y. Cheng, Y. H. Zhou, Dalton Trans. 2021, 50, 1995.
- 60S. Mandal, S. Chatterjee, R. Modak, Y. Sikdar, B. Naskar, S. Goswami, J. Coord. Chem. 2014, 67, 699.
- 61a) L. Q. Chai, L. Zhou, H. B. Zhang, K. H. Mao, H. S. Zhang, New J. Chem. 2019, 43, 12417; b) L. Q. Chai, J. Y. Zhang, L. C. Chen, Y. X. Li, L. J. Tang, Res. Chem. Intermed. 2016, 42, 3473.
- 62S. Mirdya, S. Banerjee, S. Chattopadhyay, CrstEngComm 2020, 22, 237.
- 63B. F. Rizwana, J. C. Prasana, S. Muthu, C. S. Abraham, Comput. Biol. Chem. 2019, 78, 9.
- 64S. Adhikari, T. Bhattacharjee, A. Das, S. Roy, C. G. Daniliuc, J. K. Zaręba, A. Bauzá, A. Frontera, CrstEngComm 2020, 22, 8023.
- 65a) L. Q. Chai, X. F. Zhang, L. J. Tang, J. Mol. Struct. 2021, 1245. https://doi.org/10.1016/j.molstruc.2021.131028; b) Y. M. Chai, H. B. Zhang, X. Y. Zhang, L. Q. Chai, J. Mol. Struct. 2022, 1256. https://doi.org/10.1016/j.molstruc.2022.132517
- 66M. F. Zaltariov, C. Cojocaru, S. Shova, L. Sacarescu, M. Cazacu, J. Mol. Struct. 2016, 1120, 302.
- 67a) X. F. Zhang, C. G. Li, Y. M. Chai, L. Q. Chai, Appl. Organomet. Chem. 2021, 35. https://doi.org/10.1002/aoc.6360; b) L. Q. Chai, Y. M. Chai, C. G. Li, L. Zhou, Appl. Organomet. Chem. 2021, 35. https://doi.org/10.1002/aoc.6475
- 68a) Y. A. Tyula, A. Zabardasti, H. Goudarziafshar, M. Kucerakova, Appl. Organomet. Chem. 2017, 32. https://doi.org/10.1002/aoc.4141; b) L. Q. Chai, Y. M. Chai, X. F. Zhang, Appl. Organomet. Chem. 2022, 36. https://doi.org/10.1002/aoc.6828
- 69N. Singh, I. M. Khan, A. Ahmad, S. Javed, New J. Chem. 2017, 41, 6810.
- 70a) C. G. Li, Y. M. Chai, L. Q. Chai, L. Y. Xu, Appl. Organomet. Chem. 2022, 36. https://doi.org/10.1002/aoc.6622; b) L. Q. Chai, L. Y. Xu, X. F. Zhang, Y. X. Li, Appl. Organomet. Chem. 2021, 35. https://doi.org/10.1002/aoc.6068