Sensing and photocatalytic properties of nanosized Cu(I)CN organotin supramolecular coordination polymer based on pyrazine
Corresponding Author
Safaa El-din H. Etaiw
Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
Correspondence
Safaa El-din H. Etaiw, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.
Email: [email protected]; [email protected]
Search for more papers by this authorHassan Marie
Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
Search for more papers by this authorElsayed M. Shalaby
X-Ray Crystallography Lab.,Physics Division, National Research Center, Cairo, Egypt
Search for more papers by this authorRabie S. Farag
Chemistry Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
Search for more papers by this authorFatma A. Elsharqawy
Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
Search for more papers by this authorCorresponding Author
Safaa El-din H. Etaiw
Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
Correspondence
Safaa El-din H. Etaiw, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.
Email: [email protected]; [email protected]
Search for more papers by this authorHassan Marie
Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
Search for more papers by this authorElsayed M. Shalaby
X-Ray Crystallography Lab.,Physics Division, National Research Center, Cairo, Egypt
Search for more papers by this authorRabie S. Farag
Chemistry Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
Search for more papers by this authorFatma A. Elsharqawy
Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
Search for more papers by this authorAbstract
Orange prismatic crystals of the supramolecular coordination polymer (SCP) ∞3[Cu(CN)2(Me3Sn)(Pyz)], SCP1, were synthesized using a self-assembly method under ambient conditions. Nanosized 1 was obtained using the same molar ratio in water by ultrasonic irradiation. SCP1 was characterized using single-crystal X-ray diffraction, elemental analysis, thermal analysis and Fourier transform infrared spectroscopy. SCP1 and its nanosized 1 particles were also examined using powder X-ay diffraction and scanning electron microscopy. The luminescence emission of SCP1 was studied as well as its use as a sensor for the detection of common organic solvents and metal ions. Also, the catalytic activities of nanosized 1 towards various organic dyes were investigated under ambient conditions, UV irradiation and ultrasonic irradiation. Nanosized 1 as a heterogeneous nanoparticle catalyst exhibits high catalytic activity for the degradation of eosin-Y and acid blue dyes. The mechanism of degradation investigated using various scavenger techniques is proposed and discussed. The catalytic oxidation process is mainly caused by •OH radicals.
Supporting Information
Filename | Description |
---|---|
aoc5114-sup-0001-FF-Fatma- ESI -.docxWord 2007 document , 519.6 KB |
Table S1 Hydrogen bond lengths and Van der Waals forces (Å) as well as bond angles (deg.) of the SCP1 Table S2 The wavenumbers (cm−1) of different vibrational modes of SCP1 Table S3 UV-absorption spectra and Luminescence data for pyz ligand and SCP1 Scheme S1 Structure of eosin-Y (EO) dye used for investigation Scheme S2 Structure of Acid blue-92 (AB-92) dye used for investigation Figure S1 Visualization of the 3D-network structure of the SCP1 down the projection of the a-axis showing the methyl groups and the Pyz ligands located in the space created by the interpenitrating frames Figure S2 FT-IR spectra of pyz, SCP1 and nanosized 1 Figure S3 FT-IR spectra of nanosized 1 before and after degradation process Figure S4 UV–Vis spectra of pza ligand and SCP1 as nujl moll in solid state Figure S5 (1) Solid state excitation spectra of SCP1, (2) Emission spectra of SCP1 and (3) Emission spectra of pyz ligand Figure S6 Quenching efficiency at different acetone concentrations Figure S7 LOD of SCP1 at different acetone concentrations Figure S8 Quenching efficiency at different concentrations of Fe3 + Figure S9 LOD of SCP1 at different Fe3+ concentrations Figure S10 The thermal analysis (TGA, DTG) of SCP1 Figure S11 The UV–vis absorption spectra of EO dye solution during photocatalytic degradation of the EO solution without using nanosized 1 catalyst in the presence of H2O2 at room temperature Figure S12 The UV–vis absorption spectra of AB-92 dye solution during photocatalytic degradation of the AB-92 solution without using nanosized 1 catalyst in the presence of H2O2 at room temperature Figure S13 Kinetic data for the degradation of (a) Eosin dye and (b) AB-92 dye Figure S14 The UV–vis absorption spectra of EO dye solution during photocatalytic degradation using nanosized 1 in the presence of H2O2 and 2 gm of IPA as scavengers for (.OH) radical at room temperature Figure S15 The UV–vis absorption spectra of EO dye solution during photocatalytic degradation using nanosized 1 in the presence of H2O2 and 20 mg of BQ as scavengers for (.O2−) radical at room temperature Figure S16 The UV–vis absorption spectra of EO dye solution during photocatalytic degradation using nanosized 1 in the presence of H2O2 and 20 mg of AO as scavengers for holes (h+) radical at room temperature Figure S17 kinetic data for the photodegradation of EO dye under quenching experiments |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1L. Meng, K. Liu, C. Liang, X. Guo, X. Han, S. Ren, D. Ma, G. Li, Z. Shi, S. Feng, J. Solid State Chem. 2018, 258, 56.
- 2J.-W. Cui, S.-X. Hou, Y.-H. Li, G.-H. Cui, Dalton Trans. 2017, 46, 16911.
- 3S. E. H. Etaiw, T. A. Fayed, M. M. El-bendary, H. Marie, J. Inorg. Organometal. Polym. Mater. 2017, 27, 1391.
- 4S. E. H. Etaiw, T. A. Fayed, H. Marie, J. Inorg. Organometal. Polym. Mater. 2017, 27, 1148.
- 5S. E. H. Etaiw, H. Marie, Solid State Sci. 2018, 77, 5.
- 6S. E. H. Etaiw, T. A. Fayed, M. M. El-bendary, H. Marie, Appl. Organometal. Chem. 2018, 32, e4066.
- 7H. N. Chang, S. X. Hou, Z. C. Hao, G. H. Cui, Ultrason. Sonochem. 2018, 41, 67.
- 8S. E. H. Etaiw, H. Marie, J. Photochem. Photobiol. A 2018, 364, 478.
- 9S. E. H. Etaiw, S. N. Abdou, Appl. Organometal. Chem. 2018, 32, e4053.
- 10S. E. H. Etaiw, M. M. El-bendary, J. Org. Lett. 2018, 199, 232.
- 11J. X. Li, Y. F. Li, L. W. Liu, G. H. Cui, Ultrason. Sonochem. 2018, 41, 196.
- 12M. J. Fard-Jahromi, A. Morsali, Ultrason. Sonochem. 2010, 17, 435.
- 13J.-X. Li, Z.-B. Qin, Y.-H. Li, G.-H. Cui, Ultrason. Sonochem. 2018, 48, 127.
- 14E. Mirzadeh, K. Akhbari, A. Phuruangrat, F. Costantino, Ultrason. Sonochem. 2017, 35, 382.
- 15F. S. Shirazi, K. Akhbari, S. Kawata, R. Ishikawa, J. Mol. Struct. 2016, 1123, 206.
- 16S. G. Ghosh, B. Gole, A. K. Bar, P. S. Mukherjee, Organometallics 2009, 28, 4288.
- 17F. B. Stocker, T. P. Staeva, C. M. Rienstra, D. Britton, Inorg. Chem. 1999, 38, 984.
- 18A. K. Brimah, E. Siebel, R. D. Fischer, N. A. Davies, D. C. Apperley, R. K. Harris, J. Organometal. Chem. 1994, 475, 85.
- 19S. E. H. Etaiw, S. N. Abdou, A. A. Faheim, J. Coord. Chem. 2015, 68, 491.
- 20S. E. H. Etaiw, A. S. Sultan, M. M. El-Bendary, J. Organometal. Chem. 2011, 696, 1668.
- 21S. E. H. Etaiw, A. S. Sultan, A. S. Badr El-din, Eur. J. Med. Chem. 2011, 46, 5370.
- 22H. H. Heidl, S. E. H. Etaiw, M. S. Ibrahim, A. S. Badr El-din, R. D. Fischer, J. Organometal. Chem. 2003, 684, 329.
- 23S. E. H. Etaiw, S. N. Abdou, J. Inorg. Organometal. Polym. 2010, 20, 622.
- 24W. Meng, Z. Xu, J. Ding, D. Wu, X. Han, H. Hou, Y. Fan, Cryst. Growth Des. 2014, 14, 730.
- 25M. Dai, H. X. Li, J. P. Lang, CrstEngComm 2015, 17, 4741.
- 26L. Zhao, J. Ma, Z. Z. Sun, Appl Catal B 2008, 79, 244.
- 27Y. Li, W. Q. Cui, L. Liu, R. L. Zong, W. Q. Yao, Y. H. Liang, Y. F. Zhu, Appl Catal B 2016, 199, 412.
- 28W. T. Tsai, H. C. Hsu, T. Y. Su, K. Y. Lin, C. M. Lin, T. H. Dai, J. Hazard. Mater. 2007, 147, 1056.
- 29H. M. Zhang, J. Yang, W. Q. Kan, Y. Y. Liu, J. F. Ma, Cryst. Growth Des. 2016, 16, 265.
- 30L. Sun, E. Perdue, J. McCarthy, Water Res. 1995, 29, 1471.
- 31S. Giannakis, F. A. Gamarra Vives, D. Grandjean, A. Magnet, L. F. Alencastro, C. Pulgarin, Water Res. 2015, 84, 295.
- 32M. Klavarioti, D. Mantzavinos, D. Kassinos, Environ. Int. 2009, 35, 402.
- 33S. B. Khan, M. Hou, S. Shuang, Z. Zhang, Appl. Surf. Sci. 2017, 400, 184.
- 34V. Vaiano, O. Sacco, D. Sannino, P. Ciambelli, Appl Catal B 2015, 170, 153.
- 35G. Bouhadir, D. Bourissou, Chem. Soc. Rev. 2016, 45, 1065.
- 36X. Y. Wu, H. X. Qi, J. J. Ning, J. F. Wang, Z. G. Ren, J. P. Lang, Appl Catal B 2015, 168–169, 98.
- 37S. E. H. Etaiw, H. Marie, J. Inorg. Organometal. Polym. 2018, 28, 508.
- 38S. Dashamiri, M. Ghaedi, K. Dashtian, M. R. Rahimi, A. Goudarzi, R. Jannesar, Ultrason. Sonochem. 2016, 31, 546.
- 39S. E.-d. H. Etaiw, H. Marie, Sens. Actuators B 2019, 290, 631.
- 40J. W. Eastes, W. M. Burgess, J. Am. Chem. Soc. 1942, 64, 1187.
- 41S. E. H. Etaiw, D. M. Abd El-Aziz, H. Marie, E. Ali, Solid State Sci. 2018, 79, 15.
- 42G. M. Sheldrick, SHELXL-97, in Program for Crystal-Structure Refinement, University of Gottingen, Germany 1997.
- 43A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori, M. Camalli, J. Appl. Crystallogr. 1994, 27, 435.
- 44F. B. Stocker, D. Britton, V. G. Young Jr., Inorg. Chem. 2000, 39, 3479.
- 45T. A. Tronic, K. E. deKrafft, M. J. Lim, A. N. Ley, R. D. Pike, Inorg. Chem. 2007, 46, 8897.
- 46S. E. H. Etaiw, D. M. Abd El-Aziz, S. N. Abdou, J. Inorg. Organometal. Polym. 2018, 28, 1136.
- 47R. F. Zhang, P. Z. Yan, Q. L. Li, C. L. Ma, J. Coord. Chem. 2014, 67, 649.
- 48R. F. Zhang, J. Ru, Z. X. Li, C. L. Ma, J. P. Zhang, J. Coord. Chem. 2011, 64, 4122.
- 49R. Robson, B. F. Abrahams, S. R. Batten, R. W. Gable, B. F. Hoskins, J. Liu, in Supramolecular Architecture, (Ed: T. Bein) ACS Symposium Series 499, ACS, Washington, DC 1992 256.
10.1021/bk-1992-0499.ch019 Google Scholar
- 50T. Kitazawa, S. I. Nishikiori, Y. Yamagishi, R. Kuroda, T. Iwamoto, J. Chem. Soc. Chem. Commun. 1992, 5, 413.
10.1039/c39920000413 Google Scholar
- 51S. E. H. Etaiw, S. N. Abdou, A. S. Badr El-din, J. Inorg. Organometal. Polym. 2015, 25, 1394.
- 52S. E. H. Etaiw, A. S. Badr El-din, S. N. Abdou, Transition Met. Chem. 2016, 41, 413.
- 53S. E. H. Etaiw, A. S. Badr El-din, J. Inorg. Organometal. Polym. 2012, 22, 478.
- 54E. M. Poll, J. U. Schutze, R. D. Fischer, N. A. Davies, D. C. Apperley, R. K. Harris, J. Organometal. Chem. 2001, 621, 254.
- 55S. E. H. Etaiw, A. S. Badr El-din, J. Inorg. Organometal. Polym. 2011, 21, 110.
- 56S. E. H. Etaiw, S. N. Abdou, J. Inorg. Organometal. Polym. 2012, 22, 780.
- 57S. E. H. Etaiw, M. E. El-Zaria, T. A. Fayed, S. N. Abdou, J. Inorg. Organometal. Polym. 2011, 21, 465.
- 58E. Siebel, A. M. A. Ibrahim, R. D. Fischer, Inorg. Chem. 1999, 38, 2530.
- 59S. E. H. Etaiw, T. A. Fayed, M. B. El-Zaria, S. N. Abdou, J. Inorg. Organometal. Polym. 2011, 21, 36.
- 60A. M. A. Ibrahim, J. Organometal. Chem. 1998, 556, 1.
- 61H. H. Jaffé, M. Orchin, Theory and Applications of Ultraviolet Spectroscopy, Wiley 1970.
- 62V. G. Krishnat, L. Goodman, J. Chem. Phys. 1962, 36, 2217.
- 63V. G. Krishna, L. Goodman, J. Am. Chem. Soc. 1961, 83, 2042.
- 64W. Wei, R. Lu, S. Tang, X. Liu, J. Mater. Chem. A 2015, 3, 4604.
- 65J. M. Hao, B. Y. Yu, K. V. Hecke, G. H. Cui, CrstEngComm 2015, 17, 2279.
- 66H. Xu, H. C. Hu, C. S. Cao, B. Zhao, Inorg. Chem. 2015, 54, 4585.
- 67J. X. Wu, B. Yan, Dalton Trans. 2017, 46, 7098.
- 68B. Parmar, Y. Rachuri, K. K. Bisht, R. Laiya, E. Suresh, Inorg. Chem. 2017, 56, 2627.
- 69Y. T. Yan, W. Y. Zhang, F. Zhang, F. Cao, R. F. Yang, Y. Y. Wang, L. Hou, Dalton Trans. 2018, 47, 1682.
- 70Y. M. Ma, T. Liu, W. H. Huang, J. Solid State Chem. 2018, 258, 176.
- 71J. N. Hao, B. Yan, New J. Chem. 2016, 40, 4654.
- 72B. L. Hou, D. Tian, J. Liu, L. Z. Dong, S. L. Li, D. S. Li, Y. Q. Lan, Inorg. Chem. 2016, 55, 10580.
- 73X. X. Zhao, Z. B. Qin, Y. H. Li, G. H. Cui, Polyhedron 2018, 153, 197.
- 74H. N. Chang, S. X. Hou, Z. C. Hao, G. H. Cui, Polyhedron 2018, 141, 276.
- 75T. Zhang, W. Lin, Chem. Soc. Rev. 2014, 43, 5982.
- 76S. Y. Hao, S. X. Hou, K. Van Hecke, G. H. Cui, Dalton Trans 2017, 46, 1951.