Half-sandwich Ir (III) and Rh (III) complexes as catalysts for water oxidation with double-site
Peng Li
School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418 China
Search for more papers by this authorJin-Bao Liu
Department of Science and Technology, Shanghai Urban Construction Vocational College, Shanghai, 201415 China
Search for more papers by this authorCorresponding Author
Sheng Han
School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418 China
Correspondence
Sheng Han, Wei Deng and Zi-Jian Yao, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China.
Email: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Wei Deng
School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418 China
Correspondence
Sheng Han, Wei Deng and Zi-Jian Yao, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China.
Email: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Zi-Jian Yao
School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418 China
State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023 China
Correspondence
Sheng Han, Wei Deng and Zi-Jian Yao, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China.
Email: [email protected]; [email protected]; [email protected]
Search for more papers by this authorPeng Li
School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418 China
Search for more papers by this authorJin-Bao Liu
Department of Science and Technology, Shanghai Urban Construction Vocational College, Shanghai, 201415 China
Search for more papers by this authorCorresponding Author
Sheng Han
School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418 China
Correspondence
Sheng Han, Wei Deng and Zi-Jian Yao, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China.
Email: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Wei Deng
School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418 China
Correspondence
Sheng Han, Wei Deng and Zi-Jian Yao, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China.
Email: [email protected]; [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Zi-Jian Yao
School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418 China
State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023 China
Correspondence
Sheng Han, Wei Deng and Zi-Jian Yao, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China.
Email: [email protected]; [email protected]; [email protected]
Search for more papers by this authorAbstract
A series of neutral binuclear iridium and rhodium complexes were synthesized based on bis-imine ligands under mild conditions. These half-sandwich late transition metal complexes were isolated in good yields and characterized by elemental analysis, 1H NMR, 13C NMR, HR-MS, and FT-IR spectroscopies, and the solid state structure of complexes 1 and 2 were further confirmed by single-crystal X-ray diffraction. Cyclic voltammetry (CV) characterization indicated that the complex 1 has the best catalyst for water oxidation process with TOF of 0.8 s−1 at low overpotential of 0.325 V in methanol-phosphate buffer. The proposed double-site water oxidation mechanism had been also speculated.
Supporting Information
Filename | Description |
---|---|
aoc5040-sup-0001-ESI.docWord document, 983 KB |
TABLE S1 Crystal data and structure refinement for Complexes 1, 2a FIGURE S1 LSV of the complex 1 at pH = 9 (red) and pH = 12 (blue). (C = 0.1 mM; scan rate = 0.05 V/s) |
aoc5040-sup-0002-Crystal data.rarPDF document, 619.5 KB |
DATA S2 Supporting information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1V. Balzani, A. Credi, M. Venturi, ChemSusChem 2008, 1, 26.
- 2K. J. Young, L. A. Martini, R. L. Milot, R. C. I. I. I. Snoeberger, V. S. Batista, C. A. Schmuttenmaer, R. H. Crabtree, G. W. Brudvig, Coord. Chem. Rev. 2012, 256, 2503.
- 3W. Wang, Z. Li, J. Chen, C. Li, J. Phys. Chem. C 2017, 121, 2605.
- 4C. T. Wolke, J. A. Fournier, L. C. Dzugan, M. R. Fagiani, T. T. Odbadrakh, H. Knorke, K. D. Jordan, A. B. McCoy, K. R. Asmis, M. A. Johnson, Science 2016, 354, 1131.
- 5M. K. Coggins, T. J. Meyer, Dye Sensitized Photoelectrosynthesis Cells for Making Solar Fuels: From Basic Science to Prototype Devices[M], Springer International Publishing 2016.
- 6M. R. Wasielewski, Chem. Rev. 1992, 92, 435.
- 7D. M. Guldi, G. A. Rahman, V. Sgobba, C. Ehli, Chem. Soc. Rev. 2006, 35, 471.
- 8H. J. M. Hou, A Robust PS II Mimic: Using Manganese/Tungsten Oxide Nanostructures for Photo Water Splitting[M], Springer International Publishing 2017.
- 9D. Shao, Y. Cheng, J. He, D. Feng, L.-C. Zheng, L.-J. Zheng, X. Zhang, J. Xu, W. Wang, W. Wang, F. Lu, H. Dong, L. Li, H. Liu, R. Zheng, H. Liu, ACS Catal. 2017, 7, 5308.
- 10D. Lehmann, V. Haverkamp, K. Krüger, Y. Treekamol, M. Schieda, Adv. Eng. Mater. 2017, 19, 1.
- 11S. Lee, S.-O. Kim, H. Shin, H.-J. Yun, K. Yang, S.-K. Kwon, J.-J. Kim, Y.-H. Kim, J. Am. Chem. Soc. 2013, 135, 14321.
- 12G. Bottari, G. de la Torre, D. M. Guldi, T. Torres, Chem. Rev. 2010, 110, 6768.
- 13Z. Chen, P. Kang, M.-T. Zhang, B. R. Stoner, T. J. Meyer, Energ. Environ. Sci. 2013, 6, 813.
- 14M. K. Coggins, M. T. Zhang, N. Song, T. J. Meyer, Angew. Chem. Int. Ed. 2014, 53, 12226.
- 15L. Xiang, Z. Huafei, S. Zijun, H. Ali, D. Pingwu, ACS Catal. 2015, 5, 1530.
- 16J. Shen, M. Wang, P. Zhang, J. Jiang, L. Sun, Chem. Commun. 2017, 53, 4374.
- 17A. I. Nguyen, D. L. Suess, L. E. Darago, P. H. Oyala, D. S. Levine, J. Am. Chem. Soc. 2017, 139, 5579.
- 18G. Zhang, W. Dong, X. Huang, J. Zou, Cat. Com. 2017, 89, 117.
- 19C. E. Frey, F. Kwok, D. Gonzálezflores, J. Ohms, K. Cooley, H. Dau, I. Zaharieva, T. N. Walter, H. Simchi, S. E. Mohney, P. Kurz, Sustain. Energ. Fuels 2017, 1, 1162.
- 20D. J. Wasylenko, R. D. Palmer, E. Schott, C. P. Berlinguette, Chem. Commun. 2012, 48, 2107.
- 21T. Nakazono, A. R. Parent, K. Sakai, Chem. Commun. 2013, 49, 6325.
- 22W. C. Ellis, N. D. McDaniel, S. Bernhard, T. J. Collins, J. Am. Chem. Soc. 2010, 132, 10990.
- 23Z.-Q. Wang, Z.-C. Wang, S. Zhan, J.-S. Ye, Appl. Catal. A 2015, 490, 128.
- 24Y. Han, Y. Wu, W. Lai, R. Cao, Inorg. Chem. 2015, 54, 5604.
- 25M. Zhang, M.-T. Zhang, C. Hou, Z.-F. Ke, T.-B. Lu, Angew. Chem. Int. Ed. 2014, 53, 13042.
- 26S. W. Gersten, G. J. Samuels, T. J. Meyer, J. Am. Chem. Soc. 1982, 104, 4029.
- 27N. D. McDaniel, F. J. Coughlin, L. L. Tinker, S. Bernhard, J. Am. Chem. Soc. 2007, 130, 210.
- 28R. Lalrepuia, N. D. McDaniel, H. M. Bunz, S. Bernhard, M. Albrecht, Angew. Chem. Int. Ed. 2010, 49, 9765.
- 29J. D. Blakemore, N. D. Schley, M. N. Kushner-Lenhoff, A. M. Winter, F. D'Souza, R. H. Crabtree, G. W. Brudvig, Inorg. Chem. 2012, 51, 7749.
- 30M. N. Kushner-Lenhoff, J. D. Blakemore, N. D. Schley, R. H. Crabtree, G. W. Brudvig, Dalton Trans. 2013, 42, 3617.
- 31A. Savini, A. Bucci, G. Bellachioma, L. Rocchigiani, C. Zuccaccia, A. Llobet, A. Macchioni, Eur. J. Inorg. Chem. 2014, 2014, 690.
- 32C. Zuccaccia, G. Bellachioma, O. Bortolini, A. Bucci, A. Savini, A. Macchioni, Chem. A Eur. J. 2014, 20, 3446.
- 33M. Zhou, D. Balcells, A. R. Parent, R. H. Crabtree, O. Eisenstein, ACS Catal. 2012, 2, 208.
- 34L. Zhang, Y. Gao, X. Ding, Z. Yu, L. Sun, ChemSusChem 2014, 7, 2801.
- 35A. Savini, A. Bucci, G. Bellachioma, S. Giancola, F. Palomba, L. Rocchigiani, A. Rossi, M. Suriani, C. Zuccaccia, A. Macchioni, J. Organomet. Chem. 2014, 771, 24.
- 36J. F. Hull, D. Balcells, J. D. Blakemore, C. D. Incarvito, O. Eisenstien, G. W. Brudvig, R. H. Crabtree, J. Am. Chem. Soc. 2009, 131, 8730.
- 37a)Z.-J. Yao, K. Li, P. Li, W. Deng, J. Organomet. Chem. 2017, 846, 208. b)L.-L. Ma, Y.-Y. An, L.-Y. Sun, Y.-Y. Wang, F. E. Hahn, Y.-F. Han, Angew. Chem. Int. Ed. 2019, 58, 3986. c)Y.-S. Wang, T. Feng, Y.-Y. Wang, F. E. Hahn, Y.-F. Han, Angew. Chem. Int. Ed. 2018, 57, 15767. d)M.-M. Gan, J.-Q. Liu, L. Zhang, Y.-Y. Wang, F. E. Hahn, Y.-F. Han, Chem. Rev. 2018, 118, 9587. e)L.-Y. Sun, N. Sinha, T. Yan, Y.-S. Wang, T. T. Y. Tan, L. Yu, Y.-F. Han, F. E. Hahn, Angew. Chem. Int. Ed. 2018, 57, 5161. f)W.-Y. Zhang, Y.-J. Lin, Y. -F. Han, G. -X. Jin, J. Am. Chem. Soc. 2016, 138, 10700. g)Y.-F. Han, G.-X. Jin, C. G. Daniliuc, F. E. Hahn, Angew. Chem. Int. Ed. 2015, 54, 4958.
- 38W.-B. Yu, Q.-Y. He, H.-T. Shi, J.-Y. Jia, X. Wei, Dalton Trans. 2014, 43, 6561.
- 39M. Tabata, Y. Mawatari, Polym. Rev. 2016, 57, 65.
- 40T. S. Kang, W. Wang, H. J. Zhong, Z. Z. Dong, Q. Huang, S. W. F. Mok, C. H. Leung, V. K. W. Wong, D. L. Ma, Cancer Lett. 2017, 396, 76.
- 41S. Dufresne, W. G. Skene, J. Phys. Org. Chem. 2012, 25, 211.
- 42K.-B. Iwona, M. R. Manuela, B. Rosa, P. Pier, B. Krzysztof, M. L. Alexandre, F. M. Antonio, N. C. Isabel, Micopor. Mesopor. Mat. 2016, 227, 272.
- 43M. Xue, Y. Feng, Z. Liu, P. Sun, Chin. J. Appl. Chem. 2016, 33, 855.
- 44E. Canpolat, J. Appl. Polym. Sci. 2016, 1, 705.
- 45Y.-F. Han, H. Li, P. Hu, G.-X. Jin, Organometallics 2011, 30, 905.
- 46Y. Sun, Y. C. Dai, X. Wang, J. M. Cheng, W. G. Jia, J. Coord. Chem. 2016, 69, 48.
- 47J. M. Gichumbi, H. B. Friedrich, B. Omondi, Inorg. Chim. Acta 2017, 24, 55.
- 48M. Danuta, C. B. Darius, C.-M. Boguslawa, W. Maria, S. Camille, Z.-H. Therese, J. Phys. Chem. B 2007, 111, 12228.
- 49D. E. Bowen, R. F. Jordan, R. D. Rogers, Organometallics 1995, 14, 3630.
- 50J. M. Gichumbi, H. B. Friedrich, B. Omondi, J. Org. Chem. 2016, 808, 87.
- 51J. A. Kaduk, A. T. Poulos, J. A. Ibers, J. Org. Chem. 1977, 127, 245.
- 52A. M. Mueting, P. Boyle, L. H. Pignolet, Inorg. Chem. 1984, 23, 44.
- 53Z. Yang, X. Wei, D. Liu, Y. Liu, M. Sugiy, T. Imamoto, W. Zhang, J. Org. Chem. 2015, 791, 41.
- 54A. A. Batista, L. A. C. Cordeiro, G. Oliva, O. R. Nascimento, Inorg. Chim. Acta 1997, 258, 131.
- 55H. Schmidbaur, Angew. Chem. Int. Ed. Engl. 1983, 22, 907.
- 56S. M. Alrafia, A. C. Malcolm, S. K. Liew, M. J. Ferguson, E. Rivard, J. Am. Chem. Soc. 2011, 133, 777.
- 57U. Gellrich, J. Huang, W. Seiche, M. Keller, M. Meuwly, B. Breit, J. Am. Chem. Soc. 2011, 133, 964.
- 58J.-Q. Wang, C.-X. Ren, G.-X. Jin, Organometallics 2006, 25, 74.
- 59C. J. Kliewer, M. Bieri, G. A. Somorjai, J. Phys. Chem. C 2008, 112, 11373.
- 60T. Hatanaka, Y. Ohki, K. Tatsumi, Chem-Aslan J. 2010, 5, 1657.
- 61C. J. Kliewer, C. Aliaga, M. Bieri, W. Huang, C.-K. Tsung, J. B. Wood, K. Komvopoulos, G. A. Somorjai, J. Am. Chem. Soc. 2010, 132, 13088.
- 62J. Quertinmont, A. Carletta, N. A. Tumanov, T. Leyssens, J. Wouters, B. Champagne, J. Phys. Chem. C 2017, 121, 6898.
- 63D. Balcells, Adv. Organomet. Chem. 2016, 65, 115.
- 64D. J. Vinyard, G. W. Brudvig, Annu. Rev. Phys. Chem. 2017, 68, 101.
- 65T. Ghatak, M. Sarkar, S. Dinda, I. Dutta, S. M. Rahaman, J. K. Bera, J. Am. Chem. Soc. 2015, 137, 6168.
- 66J. D. Blakemore, R. H. Crabtree, G. W. Brudvig, Chem. Rev. 2015, 115, 12974.
- 67M. D. Karkas, O. Verho, E. V. Johnston, B. Akermark, Chem. Rev. 2014, 114, 11863.
- 68H. A. Saroff, Biopolymers 2007, 85, 450.
- 69Z. Chen, T. J. Meyer, Angew. Chem. Int. Ed. Engl. 2013, 52, 700.
- 70J. M. Thomsen, S. W. Sheehan, S. M. Hashmi, J. Campos, U. Hintermair, R. H. Crabtree, G. W. Brudvig, J. Am. Chem. Soc. 2014, 136, 13826.
- 71O. Diaz-Morales, T. J. Hersbach, D. G. Hetterscheid, J. N. Reek, M. T. Koper, J. Am. Chem. Soc. 2014, 136, 10432.
- 72Y. Tamaki, A. K. Vannucci, C. J. Dares, R. A. Binstead, T. J. Meyer, J. Am. Chem. Soc. 2014, 136, 6854.
- 73T. Zhang, C. Wang, S. Liu, J. L. Wang, W. Lin, J. Am. Chem. Soc. 2014, 136, 273.
- 74K. J. Fisher, K. L. Materna, B. Q. Mercado, R. H. Crabtree, G. W. Brudvig, ACS Catal. 2017, 7, 3384.
- 75J. M. Thomsen, D. L. Huang, R. H. Crabtree, G. W. Brudvig, Dalton Trans. 2015, 44, 12452.
- 76T. Wada, S. Nishimura, T. Mochizuki, T. Ando, Y. Miyazato, Catalysts 2017, 7, 56.
- 77U. Hintermair, S. W. Sheehan, A. R. Parent, D. H. Ess, D. T. Richens, P. H. Vaccaro, G. W. Brudvig, R. H. Crabtree, J. Am. Chem. Soc. 2013, 135, 10837.
- 78J. D. Blakemore, N. D. Schley, D. Blacells, J. F. Hull, G. W. Olack, C. D. Incarvito, O. Eisenstein, G. W. Brudvig, R. H. Crabtree, J. Am. Chem. Soc. 2010, 132, 16017.