Metal Complexes Stimulating Immunogenic Pyroptosis as Burgeoning Antitumor Strategy
Dr. Yue Zheng
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry Sun Yat-Sen University, Guangzhou, 510006 China
Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, School of Bioscience and Biopharmaceutics Guangdong Pharmaceutical University, Guangzhou, 510006 China
Both the authors contributed equally to this work.
Search for more papers by this authorDr. Kun Peng
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry Sun Yat-Sen University, Guangzhou, 510006 China
AIE Institute South China University of Technology, Guangzhou, 510640 China
Both the authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Dr. Qian Cao
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry Sun Yat-Sen University, Guangzhou, 510006 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Dr. Zong-Wan Mao
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry Sun Yat-Sen University, Guangzhou, 510006 China
State Key Laboratory of Coordination Chemistry Nanjing University, Nanjing, 210023 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorDr. Yue Zheng
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry Sun Yat-Sen University, Guangzhou, 510006 China
Guangdong Province Key Laboratory of Pharmaceutical Bioactive Substances, School of Bioscience and Biopharmaceutics Guangdong Pharmaceutical University, Guangzhou, 510006 China
Both the authors contributed equally to this work.
Search for more papers by this authorDr. Kun Peng
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry Sun Yat-Sen University, Guangzhou, 510006 China
AIE Institute South China University of Technology, Guangzhou, 510640 China
Both the authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Dr. Qian Cao
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry Sun Yat-Sen University, Guangzhou, 510006 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Prof. Dr. Zong-Wan Mao
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Anti-Infective Drug Development, IGCME, GBRCE for Functional Molecular Engineering, School of Chemistry Sun Yat-Sen University, Guangzhou, 510006 China
State Key Laboratory of Coordination Chemistry Nanjing University, Nanjing, 210023 China
E-mail: [email protected]; [email protected]
Search for more papers by this authorGraphical Abstract
This minireview focuses on the cutting-edge developments in antitumor metal complexes designed to induce pyroptosis, elucidating their pyroptosis-stimulating mechanisms across chemo-, photo-, sono- and targeted therapeutic modalities, and proposes the prevailing challenges and future opportunities in metal-based immunotherapy.
Abstract
The exploration of antitumor agents with diverse action mechanisms has become an important focus in both fundamental research and clinical oncology, driven by the need for more effective cancer therapies. Metal complexes, with their versatile chemical, photophysical, and biological properties, represent an ideal class of therapeutic and diagnostic candidates for investigating novel antitumor mechanisms. Recent advances have underscored their unique ability to trigger diverse cell death pathways. Among these, pyroptosis, an inflammatory form of programmed cell death, has garnered substantial attention because of its intrinsic link to antitumor immunity. This minireview focuses on the cutting-edge developments in antitumor metal complexes designed to induce pyroptosis and elucidates their pyroptosis-stimulating mechanisms across chemo-, photo-, sono- and targeted therapeutic modalities. By dissecting the interplay among pyroptosis induction, biological processes, such as inflammasome activation and gasdermin cleavage, and subsequent immune reprogramming, we provide a thorough overview of the action mechanisms of metal complex-based pyroptosis inducers. This understanding has inspired the rational development of novel anticancer metal complexes that can remodel the tumor microenvironment and synergize with immunotherapies.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Data sharing is not applicable to this article as no new data were created or analyzed in this minireview.
References
- 1A. Zychlinsky, M. C. Prevost, P. J. Sansonetti, Nature 1992, 358, 167–169.
- 2C. A. D'Souza, J. Heitman, Trends Microbiol. 2001, 9, 112–113.
- 3J. Ding, K. Wang, W. Liu, Y. She, Q. Sun, J. Shi, H. Sun, D.-C. Wang, F. Shao, Nature 2016, 535, 111–116.
- 4J. Shi, Y. Zhao, K. Wang, X. Shi, Y. Wang, H. Huang, Y. Zhuang, T. Cai, F. Wang, F. Shao, Nature 2015, 526, 660–665.
- 5P. Broz, P. Pelegrín, F. Shao, Nat. Rev. Immunol. 2020, 20, 143–157.
- 6Q. Wang, Y. Wang, J. Ding, C. Wang, X. Zhou, W. Gao, H. Huang, F. Shao, Z. Liu, Nature 2020, 579, 421–426.
- 7S. S. Wright, P. Kumari, V. Fraile-Ágreda, C. Wang, S. Shivcharan, S. Kappelhoff, E. G. Margheritis, A. Matz, S. O. Vasudevan, I. Rubio, M. Bauer, B. Zhou, S. K. Vanaja, K. Cosentino, J. Ruan, V. A. Rathinam, Cell 2025, 188, 280–291.
- 8F. Vana, Z. Szabo, M. Masarik, M. Kratochvilova, Cell Div. 2024, 19, 24.
- 9D. Wu, S. Wang, G. Yu, X. Chen, Angew. Chem. Int. Ed. 2021, 60, 8018–8034.
- 10Y. Dou, Y. Wang, S. Tian, Q. Song, Y. Deng, Z. Zhang, P. Chen, Y. Sun, Chem. Commun. 2024, 60, 6476–6487.
- 11B. Zhou, J.-Y. Zhang, X.-S. Liu, H.-Z. Chen, Y.-L. Ai, K. Cheng, R.-Y. Sun, D. Zhou, J. Han, Q. Wu, Cell Res. 2018, 28, 1171–1185.
- 12X. Su, W.-J. Wang, Q. Cao, H. Zhang, B. Liu, Y. Ling, X. Zhou, Z.-W. Mao, Angew. Chem. Int. Ed. 2022, 61, e202115800.
- 13K. Peng, B.-B. Liang, W. Liu, Z.-W. Mao, Coord. Chem. Rev. 2021, 449, 214210.
- 14S. Abdolmaleki, A. Aliabadi, S. Khaksar, Coord. Chem. Rev. 2024, 501, 215579.
- 15G. Vigueras, G. Gasser, Nat. Chem. 2023, 15, 896–898.
- 16Y. Zhang, B.-T. Doan, G. Gasser, Chem. Rev. 2023, 123, 10135–10155.
- 17I. Amarsy, S. Papot, G. Gasser, Angew. Chem. Int. Ed. 2022, 61, e202205900.
- 18E. J. Anthony, E. M. Bolitho, H. E. Bridgewater, O. W. L. Carter, J. M. Donnelly, C. Imberti, E. C. Lant, F. Lermyte, R. J. Needham, M. Palau, P. J. Sadler, H. Shi, F.-X. Wang, W.-Y. Zhang, Z. Zhang, Chem. Sci. 2020, 11, 12888–12917.
- 19K. Peng, Y. Zheng, W. Xia, Z.-W. Mao, Chem. Soc. Rev. 2023, 52, 2790–2832.
- 20S. J. Dixon, K. M. Lemberg, M. R. Lamprecht, R. Skouta, E. M. Zaitsev, C. E. Gleason, D. N. Patel, A. J. Bauer, A. M. Cantley, W. S. Yang, B. Morrison, III, B. R. Stockwell, Cell 2012, 149, 1060–1072.
- 21S. Li, H. Yuan, Y. Chen, Z. Guo, M. C. I. F. f. A. Therapy, Fundam. Res. 2023, 3, 525–528.
- 22Y. Zheng, W.-J. Wang, J.-X. Chen, K. Peng, X.-X. Chen, Q.-H. Shen, B.-B. Liang, Z.-W. Mao, C.-P. Tan, Adv. Sci. 2025, 12, 2411629.
- 23S. Zeng, J. Wang, H. Kang, H. Li, X. Peng, J. Yoon, Angew. Chem. Int. Ed. 2025, 64, e202417899.
- 24M. Li, J. Kim, H. Rha, S. Son, M. S. Levine, Y. Xu, J. L. Sessler, J. S. Kim, J. Am. Chem. Soc. 2023, 145, 6007–6023.
- 25X. Zhang, T. Zhang, W. Tuo, Y. Liu, T. Umar, Y. Chen, Z. Wu, Q. Zhou, X. Li, G. Deng, Y. Sun, Coord. Chem. Rev. 2024, 501, 215588.
- 26A. Dao, A. K. Yadav, L. Wei, S. Banerjee, H. Huang, ChemBioChem 2022, 23, e202200201.
- 27X. Bao, M. Sun, L. Meng, H. Zhang, X. Yi, P. Zhang, Mater. Today Bio 2024, 28, 101191.
- 28S. Rottenberg, C. Disler, P. Perego, Nat. Rev. Cancer 2021, 21, 37–50.
- 29W. Lei, W. Yu, Y. Zhong, T. Li, H. Xiao, S. Zong, Oncologie 2024, 26, 711–720.
- 30R.-Y. Li, Z.-Y. Zheng, Z.-M. Li, J.-H. Heng, Y.-Q. Zheng, D.-X. Deng, X.-E. Xu, L.-D. Liao, W. Lin, H.-Y. Xu, H.-C. Huang, E.-M. Li, L.-Y. Xu, Chem. Biol. Interact. 2022, 361, 109967.
- 31H. Yan, B. Luo, X. Wu, F. Guan, X. Yu, L. Zhao, X. Ke, J. Wu, J. Yuan, Int. J. Biol. Sci. 2021, 17, 2606–2621.
- 32J. Chen, L. Ge, X. Shi, J. Liu, H. Ruan, D. Heng, C. Ye, Anticancer Agents Med. Chem. 2022, 22, 2091–2097.
- 33J. Yu, S. Li, J. Qi, Z. Chen, Y. Wu, J. Guo, K. Wang, X. Sun, J. Zheng, Cell Death Dis. 2019, 10, 193.
- 34Z. Chen, G. Xu, D. Wu, S. Wu, L. Gong, Z. Li, G. Luo, J. Hu, J. Chen, X. Huang, C. Chen, Z. Jiang, X. Li, Biochem. Pharmacol. 2020, 177, 114023.
- 35Y. Huang, W. Yang, L. Yang, T. Wang, C. Li, J. Yu, P. Zhang, Y. Yin, R. Li, K. Tao, Sci. Rep. 2023, 13, 14359.
- 36T.-Z. Ma, L.-Y. Liu, Y.-L. Zeng, K. Ding, H. Zhang, W. Liu, Q. Cao, W. Xia, X. Xiong, C. Wu, Z.-W. Mao, Chem. Sci. 2024, 15, 9756–9774.
- 37X. Su, B. Liu, W.-J. Wang, K. Peng, B.-B. Liang, Y. Zheng, Q. Cao, Z.-W. Mao, Angew. Chem. Int. Ed. 2023, 62, e202216917.
- 38R. Fan, R. Lin, S. Zhang, A. Deng, Y. Hai, J. Zhuang, Y. Liu, M. Cheng, G. Wei, Acta Pharm. Sin. B 2024, 14, 1742–1758.
- 39Y. Wang, L. Cai, H. Li, H. Chen, T. Yang, Y. Tan, Z. Guo, X. Wang, Angew. Chem. Int. Ed. 2023, 62, e202309043.
- 40X. Yuan, S. Zhang, X. Zhong, H. Yuan, D. Song, X. Wang, H. Yu, Z. Guo, Sci. China Chem. 2022, 65, 1978–1984.
- 41H. Hu, F. Zhang, Z. Sheng, S. Tian, G. Li, S. Tang, Y. Niu, J. Yang, Y. Liu, Eur. J. Med. Chem. 2024, 268, 116295.
- 42S. Monro, K. L. Colón, H. Yin, J. Roque III, P. Konda, S. Gujar, R. P. Thummel, L. Lilge, C. G. Cameron, S. A. McFarland, Chem. Rev. 2019, 119, 797–828.
- 43Y.-Y. Ling, Y.-J. Kong, L. Hao, Z.-Y. Pan, Z.-W. Mao, C.-P. Tan, Inorg. Chem. Front. 2023, 10, 3284–3292.
- 44Y.-Y. Ling, X.-Y. Xia, L. Hao, W.-J. Wang, H. Zhang, L.-Y. Liu, W. Liu, Z.-Y. Li, C.-P. Tan, Z.-W. Mao, Angew. Chem. Int. Ed. 2022, 61, e202210988.
- 45Y.-S. Zhi, T. Chen, B.-F. Liang, S. Jiang, D.-H. Yao, Z.-D. He, C.-Y. Li, L. He, Z.-Y. Pan, J. Inorg. Biochem. 2024, 260, 112695.
- 46W. Lin, Y. Liu, J. Wang, Z. Zhao, K. Lu, H. Meng, R. Luoliu, X. He, J. Shen, Z.-W. Mao, W. Xia, Angew. Chem. Int. Ed. 2023, 62, e202310158.
- 47Y.-L. Zeng, L.-Y. Liu, T.-Z. Ma, Y. Liu, B. Liu, W. Liu, Q.-H. Shen, C. Wu, Z.-W. Mao, Angew. Chem. Int. Ed. 2024, 63, e202410803.
- 48L. Zhou, J. Li, J. Chen, X. Yao, X. Zeng, Y. Liu, Y. Wang, X. Wang, Dalton Trans. 2024, 53, 15176–15189.
- 49C. You, L. Tian, J. Zhu, L. Wang, B. Z. Tang, D. Wang, J. Am. Chem. Soc. 2025, 147, 2010–2020.
- 50S. Son, J. H. Kim, X. Wang, C. Zhang, S. A. Yoon, J. Shin, A. Sharma, M. H. Lee, L. Cheng, J. Wu, J. S. Kim, Chem. Soc. Rev. 2020, 49, 3244–3261.
- 51X. Xu, J. Zheng, N. Liang, X. Zhang, S. Shabiti, Z. Wang, S. Yu, Z.-Y. Pan, W. Li, L. Cai, ACS Nano 2024, 18, 9413–9430.
- 52X. Xu, S. Shabiti, X. Zhang, J. Zheng, N. Liang, Z. Wang, S. Yu, Y. Wang, S. Jiang, Z. Pan, W. Li, L. Cai, Nano Today 2024, 56, 102270.
- 53C. Liang, J. Xie, S. Luo, C. Huang, Q. Zhang, H. Huang, P. Zhang, Nat. Commun. 2021, 12, 5001.
- 54Z. Zhao, A. Ukidve, J. Kim, S. Mitragotri, Cell 2020, 181, 151–167.
- 55A. K. Iyer, G. Khaled, J. Fang, H. Maeda, Drug Discov. Today 2006, 11, 812–818.
- 56S. Sindhwani, A. M. Syed, J. Ngai, B. R. Kingston, L. Maiorino, J. Rothschild, P. MacMillan, Y. Zhang, N. U. Rajesh, T. Hoang, J. L. Y. Wu, S. Wilhelm, A. Zilman, S. Gadde, A. Sulaiman, B. Ouyang, Z. Lin, L. Wang, M. Egeblad, W. C. W. Chan, Nat. Mater. 2020, 19, 566–575.
- 57M. Wang, H. Yi, Z. Zhan, Z. Feng, G.-G. Yang, Y. Zheng, D.-Y. Zhang, Aggregate 2024, 5, e622.
- 58L. Zheng, Y. Fan, X. Wang, Z. Yang, Y. Zhang, T. Liu, M. Chen, S. Kang, S. Guo, Z. Shi, Y. Wang, K. Zheng, S. Cai, B. Dai, S. Zhuang, Y. Li, D. Zhang, Adv. Funct. Mater. 2023, 33, 2200811.
- 59X. Zhao, J. Liu, J. Fan, H. Chao, X. Peng, Chem. Soc. Rev. 2021, 50, 4185–4219.
- 60F. Wei, J. Liang, Z. Tan, S. Tang, H. Xu, H. Liang, X.-C. Shen, H. Chao, Chem. Eng. J. 2024, 485, 150154.
- 61F. Qi, Y. Wang, H. Zhang, H. Jiang, J. Zhao, Z. Chen, Y. Cao, C. Li, J. Med. Chem. 2024, 67, 21329–21343.
- 62H. Nsairat, D. Khater, U. Sayed, F. Odeh, A. Al Bawab, W. Alshaer, Heliyon 2022, 8, e09394.
- 63J. Cao, Y. Qu, S. Zhu, J. Zhan, Y. Xu, Y. Jin, Y. Wang, Z. Li, C. Chai, X. Wu, M. Gao, C. Huang, M. Li, Aggregate 2024, 5, e637.
- 64W. Li, S. Li, G. Xu, X. Man, T. Yang, Z. Zhang, H. Liang, F. Yang, J. Med. Chem. 2023, 66, 13072–13085.
- 65C. Huang, Y. Yuan, G. Li, S. Tian, H. Hu, J. Chen, L. Liang, Y. Wang, Y. Liu, Eur. J. Med. Chem. 2024, 265, 116112.
- 66H. Zhang, X. Liao, X. Wu, C. Shi, Y. Zhang, Y. Yuan, W. Li, J. Wang, Y. Liu, J. Inorg. Biochem. 2022, 228, 111706.
- 67Y. H. Bae, J. Controlled Release 2009, 133, 2–3.
- 68F. Danhier, O. Feron, V. Préat, J. Controlled Release 2010, 148, 135–146.
- 69R. A. Petros, J. M. DeSimone, Nat. Rev. Drug Discovery 2010, 9, 615–627.
- 70X.-Y. Man, Z.-W. Sun, S.-H. Li, G. Xu, W.-J. Li, Z.-L. Zhang, H. Liang, F. Yang, Rare Met. 2024, 43, 6006–6022.
- 71J.-Y. Zhou, W.-J. Wang, C.-Y. Zhang, Y.-Y. Ling, X.-J. Hong, Q. Su, W.-G. Li, Z.-W. Mao, B. Cheng, C.-P. Tan, T. Wu, Biomaterials 2022, 289, 121757.
- 72S. Zhou, C. Gravekamp, D. Bermudes, K. Liu, Nat. Rev. Cancer 2018, 18, 727–743.
- 73M. T.-Q. Duong, Y. Qin, S.-H. You, J.-J. Min, Exp. Mol. Med. 2019, 51, 1–15.
- 74E. Boedtkjer, S. F. Pedersen, Annu. Rev. Physiol. 2020, 82, 103–126.
- 75J. A. Cook, D. Gius, D. A. Wink, M. C. Krishna, A. Russo, J. B. Mitchell, Semin. Radiat. Oncol. 2004, 14, 259–266.
- 76Y. Li, L. Zhao, X.-F. Li, Technol. Cancer Res. Treat. 2021, 20, 15330338211036304.
- 77J.-Z. Du, H.-J. Li, J. Wang, Acc. Chem. Res. 2018, 51, 2848–2856.
- 78W. Liu, C.-N. Yang, Z.-L. Yang, R.-J. Yu, Y.-T. Long, Y.-L. Ying, Angew. Chem. Int. Ed. 2023, 62, e202304023.
- 79J. He, C. Li, L. Ding, Y. Huang, X. Yin, J. Zhang, J. Zhang, C. Yao, M. Liang, R. P. Pirraco, J. Chen, Q. Lu, R. Baldridge, Y. Zhang, M. Wu, R. L. Reis, Y. Wang, Adv. Mater. 2019, 31, 1902409.
- 80B. Yu, Y. Wang, T. Bing, Y. Tang, J. Huang, H. Xiao, C. Liu, Y. Yu, Adv. Mater. 2024, 36, 2310456.
- 81X. Guo, Y. Cheng, X. Zhao, Y. Luo, J. Chen, W.-E. Yuan, J. Nanobiotechnol. 2018, 16, 74.
- 82N. Hashemi Goradel, M. Najafi, E. Salehi, B. Farhood, K. Mortezaee, J. Cell. Physiol. 2019, 234, 5683–5699.
- 83R. A. Aglietti, E. C. Dueber, Trends Immunol. 2017, 38, 261–271.
- 84S. Wan, G. Zhang, R. Liu, M. N. Abbas, H. Cui, Cell Commun. Signal 2023 21, 115.
- 85D. Frank, J. E. Vince, Cell Death Differ. 2019, 26, 99–114.
- 86M. Fritsch, S. D. Günther, R. Schwarzer, M.-C. Albert, F. Schorn, J. P. Werthenbach, L. M. Schiffmann, N. Stair, H. Stocks, J. M. Seeger, M. Lamkanfi, M. Krönke, M. Pasparakis, H. Kashkar, Nature 2019, 575, 683–687.
- 87L. Qi, L. Wang, M. Jin, M. Jiang, L. Li, Y. Li, Immunology 2023, 169, 245–259.
- 88C.-N. Ko, G. Li, C.-H. Leung, D.-L. Ma, Coord. Chem. Rev. 2019, 381, 79–103.
- 89X. Hu, H. Zhang, Q. Zhang, X. Yao, W. Ni, K. Zhou, J. Neuroinflammation 2022, 19, 242.
- 90X.-Q. Li, Q. Yu, B. Fang, Z.-L. Zhang, H. Ma, Neuropharmacology 2019, 160, 107661.
- 91J. Zhang, H. Zou, J. Lei, B. He, X. He, H. H. Y. Sung, R. T. K. Kwok, J. W. Y. Lam, L. Zheng, B. Z. Tang, Angew. Chem. Int. Ed. 2020, 59, 7097–7105.
- 92J. Jiang, B. Cao, Y. Chen, H. Luo, J. Xue, X. Xiong, T. Zou, Angew. Chem. Int. Ed. 2022, 61, e202201103.
- 93M. Selenius, A.-K. Rundlöf, E. Olm, A. P. Fernandes, M. Björnstedt, Antioxid. Redox Signaling 2010, 12, 867–880.
- 94D. Bertheloot, E. Latz, B. S. Franklin, Cell Mol. Immunol. 2021, 18, 1106–1121.
- 95R. Kang, L. Zeng, S. Zhu, Y. Xie, J. Liu, Q. Wen, L. Cao, M. Xie, Q. Ran, G. Kroemer, H. Wang, T. R. Billiar, J. Jiang, D. Tang, Cell Host Microbe 2018, 24, 97–108.
- 96Y. Jiao, T. Zhang, C. Zhang, H. Ji, X. Tong, R. Xia, W. Wang, Z. Ma, X. Shi, Crit. Care 2021, 25, 356.
- 97R. Karki, T.-D. Kanneganti, Trends Immunol. 2021, 42, 681–705.
- 98R.-N. Zhang, Z.-Q. Jing, L. Zhang, Z.-J. Sun, Cancer Lett. 2023, 575, 216413.
- 99Y. Yu, L. Gong, J. Ye, Front. Oncol. 2020, 10, 942.
- 100W. Gao, X. Wang, Y. Zhou, X. Wang, Y. Yu, Sig. Transduct. Target. Ther. 2022, 7, 196.