Expansion of Structure Property in Cascade Nazarov Cyclization and Cycloexpansion Reaction to Diverse Angular Tricycles and Total Synthesis of Nominal Madreporanone
Kun Fang
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorBao-Heng Dou
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorCorresponding Author
Fu-Min Zhang
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorYun-Peng Wang
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorZi-Rui Shan
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorXiao-Yu Wang
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorSi-Hua Hou
School of Pharmaceutical Sciences, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorCorresponding Author
Yong-Qiang Tu
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorTong-Mei Ding
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorKun Fang
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorBao-Heng Dou
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorCorresponding Author
Fu-Min Zhang
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorYun-Peng Wang
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorZi-Rui Shan
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorXiao-Yu Wang
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorSi-Hua Hou
School of Pharmaceutical Sciences, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorCorresponding Author
Yong-Qiang Tu
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorTong-Mei Ding
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240 China
Search for more papers by this authorGraphical Abstract
A cascade Nazarov cyclization/dicycloexpansions reaction for the efficient synthesis angularly fused M/5/N tricyclic skeletons (M=5, 6; N=4–9, 13) has been explored. In this novel transformation, the priority of ring expansion could be predicted by the rational design of the ring size and substituents. Employing the reaction as a key step, we finished total synthesis of nominal madreporanone for the first time.
Abstract
A cascade Nazarov cyclization/dicycloexpansions reaction was developed for the precise synthesis of the angularly fused M/5/N (M=5, 6; N=4–9, 13) tricyclic skeletons. The prioritized expansion of the first ring played a critical role in the transformations, due to the release of ring strain, and the nature of the substituents present on the substrate is another influencing factor. This pioneering cascade reaction features broad substrates scope (33 examples), short reaction time, exceptional yields (up to 95 %), and remarkable regioselectivities (>20 : 1). Exploiting the synthetic application of this cascade reaction, we successfully executed a succinct total synthesis of nominal madreporanone for the first time.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202412337-sup-0001-misc_information.pdf18.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aA. G. Atanasov, S. B. Zotchev, V. M. Dirsch, I. E. Orhan, M. Banach, J. M. Rollinger, D. Barreca, W. Weckwerth, R. Bauer, E. A. Bayer, M. Majeed, A. Bishayee, V. Bochkov, G. K. Bonn, N. Braidy, F. Bucar, A. Cifuentes, G. D'Onofrio, M. Bodkin, M. Diederich, A. T. Dinkova-Kostova, T. Efferth, K. El Bairi, N. Arkells, T.-P. Fan, B. L. Fiebich, M. Freissmuth, M. I. Georgiev, S. Gibbons, K. M. Godfrey, C. W. Gruber, J. Heer, L. A. Huber, E. Ibanez, A. Kijjoa, A. K. Kiss, A. Lu, F. A. Macias, M. J. S. Miller, A. Mocan, R. Müller, F. Nicoletti, G. Perry, V. Pittalà, L. Rastrelli, M. Ristow, G. L. Russo, A. S. Silva, D. Schuster, H. Sheridan, K. Skalicka-Woźniak, L. Skaltsounis, E. Sobarzo-Sánchez, D. S. Bredt, H. Stuppner, A. Sureda, N. T. Tzvetkov, R. A. Vacca, B. B. Aggarwal, M. Battino, F. Giampieri, M. Wink, J.-L. Wolfender, J. Xiao, A. W. K. Yeung, G. Lizard, M. A. Popp, M. Heinrich, I. Berindan-Neagoe, M. Stadler, M. Daglia, R. Verpoorte, C. T. Supuran, Nat. Rev. Drug Discovery 2021, 20, 200–216;
- 1bW. L. Liu, B. K. Hong, J. Wang, X. G. Lei, Acc. Chem. Res. 2020, 53, 2569–2586;
- 1cD. J. Newman, G. M. Cragg, J. Nat. Prod. 2020, 83, 770–803;
- 1dP. F. Hu, H. M. Chi, K. C. DeBacker, X. Gong, J. H. Keim, I. T. Hsu, S. A. Snyder, Nature 2019, 569, 703–707;
- 1eK. W. Quasdorf, L. E. Overman, Nature 2014, 516, 181–191;
- 1fK. C. Nicolaou, T. Montagnon, Molecules That Changed the World, Wiley-VCH 2008.
- 2
- 2aY. P. Liu, Q. Dai, W. X. Wang, J. He, Z. H. Li, T. Feng, J. K. Liu, J. Nat. Prod. 2020, 83, 1725–1729;
- 2bQ. Li, C. M. Chen, L. Cheng, M. S. Wei, C. Dai, Y. He, J. J. Gong, R. Q. Zhu, X. N. Li, J. J. Liu, J. P. Wang, H. C. Zhu, Y. H. Zhang, J. Org. Chem. 2019, 84, 1534–1541;
- 2cL. S. Wan, Y. Nian, C. J. Ye, L. D. Shao, X. R. Peng, C. A. Geng, Z. L. Zuo, X. N. Li, J. Yang, M. Zhou, M. H. Qiu, Org. Lett. 2016, 18, 2166–2169;
- 2dL. Du, D. Li, T. Zhu, S. Cai, F. Wang, X. Xiao, Q. Gu, Tetrahedron 2009, 65, 1033–1039;
- 2eI. I. Rodríguez, A. D. Rodríguez, H. Zhao, J. Org. Chem. 2009, 74, 7581–7584;
- 2fY. Hirasawa, H. Morita, M. Shiro, J. Kobayashi, Org. Lett. 2003, 5, 3991–3993;
- 2gJ. F. Zhou, G. Q. Zhan, H. Q. Zhang, Q. H. Zhang, Y. Li, Y. B. Xue, G. M. Yao, Org. Lett. 2003, 5, 3991–3993;
- 2hJ. Kupta, T. Anke, F. Oberwinkler, G. Schramm, W. J. Steglich, Antibiotica 1979, 32, 130–135.
- 3For selected reviews for the preparation of angularly fused tricyclic skeletons, see:
- 3aH. Jeon, J. D. Winkler, Synthesis 2021, 53, 475–488;
- 3bS. Kotha, Y. Tangella, Synlett 2020, 31, 1976–2012;
- 3cF. L. Bideau, M. Kousara, L. Chen, L. Wei, F. Dumas, Chem. Rev. 2017, 117, 6110–6159;
- 3dG. Mehta, A. Srikrishna, Chem. Rev. 1997, 97, 671–720.
- 4For selected references for the preparation of angularly fused tricyclic skeletons via carbocation induced reactions, see:
- 4aW. M. Amberg, E. M. Carreira, J. Am. Chem. Soc. 2022, 144, 15475–15479;
- 4bF. P. Zhu, X. Guo, F. M. Zhang, X. M. Zhang, H. Wang, Y. Q. Tu, Org. Lett. 2020, 22, 2076–2080;
- 4cJ. B. Peng, Y. Qi, Z. R. Jing, S. H. Wang, Y. Q. Tu, D. Y. Zhu, F. M. Zhang, Org. Lett. 2015, 17, 1014–1017;
- 4dJ. Barluenga, A. Álvarez-Fernández, T. Suárez-Rodríguez, Á. L. Suárez-Sobrino, M. Tomás, Org. Lett. 2013, 15, 488–491;
- 4eM. K. Pallerla, J. M. Fox, Org. Lett. 2007, 9, 5625–5628;
- 4fL. E. Overman, L. D. Pennington, J. Org. Chem. 2003, 68, 7143–7157;
- 4gL. Fitjer, M. Majewski, H. Monzó-Oltra, Tetrahedron 1995, 51, 8835–8852.
- 5For selected references for the preparation of angularly fused tricyclic skeletons via cycloaddition reactions, see:
- 5aL. N. Wang, Z. Q. Huang, Z. X. Yu, Org. Lett. 2023, 25, 1732–1736;
- 5bS. Geum, H. Y. Lee, Org. Lett. 2014, 16, 2466–2469;
- 5cM. R. Zhang, J. L. Zhang, Chem. Eur. J. 2014, 20, 399–404;
- 5dT. Kang, S. B. Song, W. Y. Kim, B. G. Kim, H. Y. Lee, J. Am. Chem. Soc. 2014, 136, 10274–10276;
- 5eT. Kang, W. Y. Kim, Y. Yoon, B. G. Kim, H. Y. Lee, J. Am. Chem. Soc. 2011, 133, 18050–18053;
- 5fH. Y. Lee, Y. Jung, Y. Yoon, B. G. Kim, Y. Kim, Org. Lett. 2010, 12, 2672–2674;
- 5gH. P. Wu, R. Aumann, R. Frhlich, B. Wibbeling, Chem. Eur. J. 2002, 8, 910–916;
10.1002/1521-3765(20020215)8:4<910::AID-CHEM910>3.0.CO;2-T CAS PubMed Web of Science® Google Scholar
- 5hT. Hudlicky, L. D. Kwart, M. H. Tiedje, B. C. Ranu, R. P. Short, J. O. Frazier, H. L. Rigby, Synthesis 1986, 9, 716–727;
10.1055/s-1986-31756 Google Scholar
- 5iF. J. Chang, R. Gurubrahamam, K. Chen, Adv. Synth. Catal. 2017, 359, 1277–1282.
- 6For selected references for the preparation of angularly fused tricyclic skeletons via ring closing metathesis reactions, see:
- 6aS. Kotha, R. R. Keesari, Eur. J. Org. Chem. 2022, e202201094;
- 6bS. Kotha, R. R. Keesari, J. Org. Chem. 2021, 86, 17129–17155;
- 6cJ. Zhang, M. Liu, C. H. Wu, G. Y. Zhao, P. Q. Chen, L. Zhou, X. G. Xie, R. Fang, H. L. Li, X. G. She, Angew. Chem. Int. Ed. 2020, 59, 3966–3970; Angew. Chem. 2020, 132, 3994–3998;
- 6dS. Kotha, R. R. Keesari, A. Fatma, R. Gunta, J. Org. Chem. 2020, 85, 851–863;
- 6eF. Y. Gao, C. T. M. Stamp, P. D. Thornton, T. S. Cameron, L. E. Doyle, D. O. Miller, D. J. Burnell, Chem. Commun. 2012, 48, 233–235;
- 6fJ. Holtsclaw, M. Koreeda, Org. Lett. 2004, 6, 3719–3722;
- 6gM. J. Bassindale, A. S. Edwards, P. Hamley, H. Adams, J. P. A. Harrity, Chem. Commun. 2000, 1035–1036.
- 7For selected references for the preparation of angularly fused tricyclic skeletons via structural reorganization strategies, see:
- 7aB. Xu, Z. Y. Zhang, D. J. Tantillo, M. J. Dai, J. Am. Chem. Soc. 2024, 10.1021/jacs.4c07900;
- 7bD. Y. Sun, R. Y. Chen, D. M. Tang, Q. D. Xia, Y. F. Zhao, C. H. Liu, H. F. Ding, J. Am. Chem. Soc. 2023, 145, 11927–11932;
- 7cY. F. Zhao, J. L. Hu, R. Y. Chen, F. P. Xiong, H. J. Xie, H. F. Ding, J. Am. Chem. Soc. 2022, 144, 2495–2500;
- 7dJ. H. Gao, P. R. Rao, K. X. Xu, S. F. Wang, Y. F. Wu, C. He, H. F. Ding, J. Am. Chem. Soc. 2020, 142, 4592–4597;
- 7eH. P. Kalmode, K. L. Handore, D. S. Reddy, J. Org. Chem. 2017, 82, 7614–7620;
- 7fK. Kakiuchi, Y. Ohnishi, K. Kobiro, Y. Tobe, Y. Odaira, J. Org. Chem. 1991, 56, 463–466.
- 8For selected references for the preparation of angularly fused tricyclic skeletons via radical cyclization reactions, see:
- 8aJ. X. Du, S. M. Fu, B. Liu, Org. Lett. 2024, 26, 4721–4726;
- 8bM. Q. Hu, W. Cao, Z. Wang, Y. Hao, G. X. Huang, Y. Q. Zhou, S. Qin, S. M. Fu, B. Liu, Chin. J. Chem. 2023, 41, 2502–2506;
- 8cS. Bolgunas, E. Paleo, E. Alwedi, Y. J. Wei, T. M. Keller, F. F. Fleming, Org. Lett. 2023, 25, 3512–3516;
- 8dY. Wang, Y. J. Su, Y. X. Jia, J. Am. Chem. Soc. 2023, 145, 9459–9463;
- 8eX. M. Chen, W. D. Yao, H. F. Zheng, H. Y. Wang, P. P. Zhou, D. Y. Zhu, S. H. Wang, J. Am. Chem. Soc. 2023, 145, 13549–13555;
- 8fS. Li, P. P. Zhang, Y. H. Li, S. M. Lu, J. X. Gong, Z. Yang, Org. Lett. 2017, 19, 4416–4419;
- 8gC. Prakash, A. K. Mohanakrishnan, Eur. J. Org. Chem. 2008, 9, 1535–1543;
10.1002/ejoc.200700986 Google Scholar
- 8hN. T. Tzvetkov, T. Arndtb, J. Mattay, Tetrahedron 2007, 63, 10497–10510;
- 8iC. K. Sha, F. K. Lee, C. J. Chang, J. Am. Chem. Soc. 1999, 121, 9875–9876;
- 8jD. L. J. Clive, D. C. Cole, Y. Tao, J. Org. Chem. 1994, 59, 1396–1406;
- 8kS. Janardhanam, P. Shanmugam, K. Rajagopalan, J. Org. Chem. 1993, 58, 7782–7788.
- 9For selected references for the preparation of angularly fused tricyclic skeletons via Pauson–Khand reactions, see:
- 9aL. C. Rosenbaum, M. Häfner, T. Gaich, Angew. Chem. Int. Ed. 2021, 60, 2939–2942; Angew. Chem. 2021, 133, 2975–2978;
- 9bZ. C. Peng, P. Arya, Z. Zhou, S. A. Snyder, Angew. Chem. Int. Ed. 2020, 59, 13521–13525; Angew. Chem. 2020, 132, 13623–13627;
- 9cY. Qu, Z. Wang, Z. Zhang, W. Zhang, J. Huang, Z. Yang, J. Am. Chem. Soc. 2020, 142, 6511–6515;
- 9dZ. H. Huang, J. Huang, Y. Z. Qu, W. B. Zhang, J. X. Gong, Z. Yang, Angew. Chem. Int. Ed. 2018, 57, 8744–8748; Angew. Chem. 2018, 130, 8880–8884;
- 9eM. K. Pallerla, J. M. Fox, Org. Lett. 2007, 9, 5625–5628;
- 9fT. Kozaka, N. Miyakoshi, C. Mukai, J. Org. Chem. 2007, 72, 10147–10154;
- 9gA. S. Gybin, V. A. Smit, R. Caple, A. L. Veretenov, A. S. Shashkov, L. G. Vorontsova, M. G. Kurella, V. S. Chertkov, A. A. Carapetyan, A. Y. Kosnikov, M. S. Alexanyan, S. V. Lindeman, V. N. Panov, A. V. Maleev, Y. T. Struchkov, S. M. Sharpe, J. Am. Chem. Soc. 1992, 114, 5555–5566;
- 9hN. E. Schore, M. J. Knudsen, J. Org. Chem. 1987, 52, 569–580;
- 9iD. W. Jee, H. Y. Lee, Asian J. Org. Chem. 2021, 10, 820–826.
- 10For selected references for the preparation of angularly fused tricyclic skeletons via biosynthetic pathway, see:
- 10aH. C. Zeng, G. P. Yin, Q. Wei, D. H. Li, Y. Wang, Y. C. Hu, C. H. Hu, Y. Zou, Angew. Chem. Int. Ed. 2019, 58, 6569–6573; Angew. Chem. 2019, 131, 6641–6645;
- 10bJ. Shao, Q. W. Chen, H. J. Lv, J. He, Z. F. Liu, Y. N. Lu, H. L. Liu, G. D. Wang, Y. Wang, Org. Lett. 2017, 19, 1816–1819;
- 10cC. E. Davis, B. C. Duffy, R. M. Coates, J. Org. Chem. 2003, 68, 6935–6943.
- 11
- 11aX. M. Zhang, B. S. Li, S. H. Wang, K. Zhang F M Zhang, Y. Q. Tu, Chem. Sci. 2021, 12, 9262–9274;
- 11bZ. L. Song, C. A. Fan, Y. Q. Tu, Chem. Rev. 2011, 111, 7523–7556;
- 11cB. M. Wang, Y. Q. Tu, Acc. Chem. Res. 2011, 44, 1207–1222.
- 12Y. P. Wang, K. Fang, Y. Q. Tu, J. J. Yin, Q. Zhao, T. Ke, Nat. Commun. 2022, 13, 2335–2342.
- 13
- 13aG. Pontes, J. Schneider, P. Brud, L. Benderitter, B. Fourie, C. Tang, C. M. Timperley, J. E. Forman, J. Chem. Educ. 2020, 97, 1715–1730;
- 13bhttp://ursula.chem.yale.edu/~chem220/chem220js/STUDYAIDS/thermo/cycloalkanes/cycloalkanes.html.
- 14
- 14aY. P. Zheng, J. X. Xu, Prog. Chem. 2014, 26, 1471–1491;
- 14bM. E. Jung, G. Piizzi, Chem. Rev. 2005, 105, 1735–1766.
- 15For the detailed, please see the Supporting Information.
- 16
- 16aY. L. Zhao, X. W. Long, H. Wu, J. Deng, Org. Chem. Front. 2022, 9, 6979–6998;
- 16bS. H. Hou, Y. Q. Tu, L. Liu, F. M. Zhang, S. H. Wang, X. M. Zhang, Angew. Chem. Int. Ed. 2013, 52, 11373–11376;
- 16cX. J. Wang, G. J. Zhang, P. Y. Zhuang, Y. Zhang, S. S. Yu, X. Q. Bao, D. Zhang, Y. H. Yuan, N. H. Chen, S. G. Ma, J. Qu, Y. Li, Org. Lett. 2012, 14, 2614–2617;
- 16dX. M. Zhang, Y. Q. Tu, F. M. Zhang, H. Shao, X. Meng, Angew. Chem. Int. Ed. 2011, 50, 3916–3919;
- 16eD. E. Cane, J. K. Sohng, P. G. Williard, J. Org. Chem. 1992, 57, 844–851.
- 17Deposition numbers 2346694 (for 14), 2346692 (for 17), 2346693 (for 3), and 2346695 (for the derivative of 2 aa) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 18
- 18aD. Leboeuf, V. Gandon, J. Ciesielski, A. J. Frontier, J. Am. Chem. Soc. 2012, 134, 6296–6308;
- 18bD. Lebœuf, J. Huang, V. Gandon, A. J. Frontier, Angew. Chem. Int. Ed. 2011, 50, 10981–10985; Angew. Chem. 2011, 123, 11173–11177;
- 18cJ. Huang, A. J. Frontier, J. Am. Chem. Soc. 2007, 129, 8060–8061.
- 19L. A. Loyola, J. Bórquez, G. Morales, A. San-Martín, J. Darias, Tetrahedron Lett. 2002, 43, 6359–6362.
- 20R. Long, Z. Yang, Tetrahedron 2019, 75, 1746–1750.
- 21B. H. Paul, R. D. Gregory, J. Org. Chem. 2008, 73, 4131–4138.
- 22M. Hanack, G. Auchter, J. Am. Chem. Soc. 1985, 107, 5238–5245.
- 23
- 23aG. Erker, Dalton Trans. 2005, 11, 1883–1890;
- 23bD. J. Parks, W. E. Piers, M. Parvez, R. Atencio, M. J. Zaworotko, Organometallics 1998, 17, 1369–1377.
- 24G. Blay, B. García, E. Molina, J. R. Pedro, J. Nat. Prod. 2006, 69, 1234–1236.
- 25J. Skotnitzki, A. Kremsmair, B. Kicin, R. Saeb, V. Ruf, P. Knochel, Synthesis 2020, 52, 873–881.
- 26S. H. Hou, Y. Q. Tu, S. H. Wang, C. C. Xi, F. M. Zhang, S. H. Wang, Y. T. Li, L. Liu, Angew. Chem. Int. Ed. 2016, 55, 4456–4460; Angew. Chem. 2016, 128, 4532–4536.
- 27Y. Ito, T. Hirao, T. Saegusa, J. Org. Chem. 1978, 43, 1011–1013.
- 28T. Miyagawa, K. Nagai, A. Yamada, Y. Sugihara, T. Fukuda, T. Fukuda, R. Uchida, H. Tomoda, S. O̅mura, T. Nagamitsu, Org. Lett. 2011, 13, 1158–1161.
- 29H. Shao, K. Fang, Y. P. Wang, X. M. Zhang, T. M. Ding, S. Y. Zhang, Z. M. Chen, Y. Q. Tu, Org. Lett. 2020, 22, 3775–3779.
- 30G. A. Molander, Chem. Rev. 1992, 92, 29–68.
- 31H. Cui, Y. Shen, Y. Y. Chen, R. F. Wang, H. X. Wei, P. F. Fu, X. Lei, H. X. Wang, R. H. Bi, Y. D. Zhang, J. Am. Chem. Soc. 2022, 144, 8938–8944.