p–d Orbital Hybridization in Ag-based Electrocatalysts for Enhanced Nitrate-to-Ammonia Conversion
Guanzheng Wu
The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002 P. R. China
These authors contributed equally.
Search for more papers by this authorWuyong Zhang
Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201 P. R. China
These authors contributed equally.
Search for more papers by this authorRui Yu
The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002 P. R. China
Search for more papers by this authorYidong Yang
The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002 P. R. China
Search for more papers by this authorJiadi Jiang
The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002 P. R. China
Search for more papers by this authorMengmiao Sun
The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002 P. R. China
Search for more papers by this authorAijun Du
School of Chemistry and Physics and Centre for Material Science, Faculty of Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4001 Australia
Search for more papers by this authorCorresponding Author
Wenhui He
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 P. R. China
Search for more papers by this authorCorresponding Author
Lei Dai
Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004 P. R. China
Search for more papers by this authorCorresponding Author
Xin Mao
School of Chemistry and Physics and Centre for Material Science, Faculty of Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4001 Australia
Search for more papers by this authorCorresponding Author
Zhening Chen
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P.R. China
Search for more papers by this authorCorresponding Author
Qing Qin
The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002 P. R. China
Search for more papers by this authorGuanzheng Wu
The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002 P. R. China
These authors contributed equally.
Search for more papers by this authorWuyong Zhang
Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Qianwan Institute of CNITECH, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201 P. R. China
These authors contributed equally.
Search for more papers by this authorRui Yu
The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002 P. R. China
Search for more papers by this authorYidong Yang
The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002 P. R. China
Search for more papers by this authorJiadi Jiang
The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002 P. R. China
Search for more papers by this authorMengmiao Sun
The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002 P. R. China
Search for more papers by this authorAijun Du
School of Chemistry and Physics and Centre for Material Science, Faculty of Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4001 Australia
Search for more papers by this authorCorresponding Author
Wenhui He
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 P. R. China
Search for more papers by this authorCorresponding Author
Lei Dai
Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004 P. R. China
Search for more papers by this authorCorresponding Author
Xin Mao
School of Chemistry and Physics and Centre for Material Science, Faculty of Science, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4001 Australia
Search for more papers by this authorCorresponding Author
Zhening Chen
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 P.R. China
Search for more papers by this authorCorresponding Author
Qing Qin
The Key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002 P. R. China
Search for more papers by this authorGraphical Abstract
A typical Sn-doped Ag catalyst (SnAg) with strong p–d orbital hybridization achieves a remarkable Faradaic efficiency (FE) NH3 yield rate in electrocatalytic NO3− reduction at ampere-level, which can be further extended to Struvite production and Zn-NO3− battery. Mechanistic studies reveal that such p–d orbital hybridization in SnAg benefits nitrite deoxygenation, the rate-determining step for NH3 synthesis.
Abstract
Considering the substantial role of ammonia, developing highly efficient electrocatalysts for nitrate-to-ammonia conversion has attracted increasing interest. Herein, we proposed a feasible strategy of p–d orbital hybridization via doping p-block metals in an Ag host, which drastically promotes the performance of nitrate adsorption and disassociation. Typically, a Sn-doped Ag catalyst (SnAg) delivers a maximum Faradaic efficiency (FE) of 95.5±1.85 % for NH3 at −0.4 V vs. RHE and reaches the highest NH3 yield rate to 482.3±14.1 mg h−1 mgcat.−1. In a flow cell, the SnAg catalyst achieves a FE of 90.2 % at an ampere-level current density of 1.1 A cm−2 with an NH3 yield of 78.6 mg h−1 cm−2, during which NH3 can be further extracted to prepare struvite as high-quality fertilizer. A mechanistic study reveals that a strong p–d orbital hybridization effect in SnAg is beneficial for nitrite deoxygenation, a rate-determining step for NH3 synthesis, which as a general principle, can be further extended to Bi- and In-doped Ag catalysts. Moreover, when integrated into a Zn-nitrate battery, such a SnAg cathode contributes to a superior energy density of 639 Wh L−1, high power density of 18.1 mW cm−2, and continuous NH3 production.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202410251-sup-0001-misc_information.pdf4.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aW. He, S. Chandra, T. Quast, S. Varhade, S. Dieckhofer, J. R. C. Junqueira, H. Gao, S. Seisel, W. Schuhmann, Adv. Mater. 2023, 35, 2303050;
- 1bJ. Liang, Z. Li, L. Zhang, X. He, Y. Luo, D. Zheng, Y. Wang, T. Li, H. Yan, B. Ying, S. Sun, Q. Liu, M. S. Hamdy, B. Tang, X. Sun, Chem 2023, 9, 1768–1827;
- 1cV. Rosca, M. Duca, M. T. de Groot, M. T. M. Koper, Chem. Rev. 2009, 109, 2209–2244;
- 1dW. He, J. Zhang, S. Dieckhöfer, S. Varhade, A. C. Brix, A. Lielpetere, S. Seisel, J. R. C. Junqueira, W. Schuhmann, Nat. Commun. 2022, 13, 1129;
- 1eD. Ye, S. C. E. Tsang, Nat. Synth. 2023, 2, 612–623.
- 2
- 2aX. Yang, S. Mukherjee, T. O′Carroll, Y. Hou, M. R. Singh, J. A. Gauthier, G. Wu, Angew. Chem. Int. Ed. 2022, 62, 202215938;
- 2bL. Li, C. Tang, H. Jin, K. Davey, S.-Z. Qiao, Chem 2021, 7, 3232–3255.
- 3
- 3aM. M. Sun, G. Z. Wu, L. Dai, M. Oschatz, Q. Qin, Catal. Sci. Technol. 2022, 12, 6572–6580;
- 3bS. G. Bratsch, J. Phys. Chem. Ref. Data 1989, 18, 1–21;
- 3cJ. Li, G. Zhan, J. Yang, F. Quan, C. Mao, Y. Liu, B. Wang, F. Lei, L. Li, A. W. Chan, J. Am. Chem. Soc. 2020, 142, 7036–7046;
- 3dZ. Shu, H. Chen, X. Liu, H. Jia, H. Yan, Y. Cai, Adv. Funct. Mater. 2023, 33, 2301493;
- 3eJ. Ni, J. Yan, F. Li, H. Qi, Q. Xu, C. Su, L. Sun, H. Sun, J. Ding, B. Liu, Adv. Energy Mater. 2024, DOI: 10.1002/aenm.202400065;
- 3fZ. Shu, Y. Cai, J. Mater. Chem. A 2021, 9, 16056–16064;
- 3gZ. Shu, H. Yan, H. Chen, Y. Cai, J. Mater. Chem. A 2022, 10, 5470–5478;
- 3hL. Xu, R. Iqbal, Y. Wang, S. Taimoor, L. Hao, R. Dong, K. Liu, J. Texter, Z. Sun, The Innov. Mater. 2024, 2, 100060.
10.59717/j.xinn-mater.2024.100060 Google Scholar
- 4
- 4aC. Cai, B. Liu, K. Liu, P. Li, J. Fu, Y. Wang, W. Li, C. Tian, Y. Kang, A. Stefancu, H. Li, C. W. Kao, T. S. Chan, Z. Lin, L. Chai, E. Cortes, M. Liu, Angew. Chem. Int. Ed. 2022, 61, 202212640;
- 4bJ. Li, J. Gao, T. Feng, H. Zhang, D. Liu, C. Zhang, S. Huang, C. Wang, F. Du, C. Li, J. Power Sources 2021, 511, 230463.
- 5
- 5aS. Han, H. Li, T. Li, F. Chen, R. Yang, Y. Yu, B. Zhang, Nat. Catal. 2023, 6, 402–414;
- 5bJ.-Y. Fang, Q.-Z. Zheng, Y.-Y. Lou, K.-M. Zhao, S.-N. Hu, G. Li, O. Akdim, X.-Y. Huang, S.-G. Sun, Nat. Commun. 2022, 13, 7899;
- 5cG. F. Chen, Y. F. Yuan, H. F. Jiang, S. Y. Ren, L. X. Ding, L. Ma, T. P. Wu, J. Lu, H. H. Wang, Nat. Energy 2020, 5, 605–613;
- 5dF. Y. Chen, Z. Y. Wu, S. Gupta, D. J. Rivera, S. V. Lambeets, S. Pecaut, J. Y. T. Kim, P. Zhu, Y. Z. Finfrock, D. M. Meira, G. King, G. Gao, W. Xu, D. A. Cullen, H. Zhou, Y. Han, D. E. Perea, C. L. Muhich, H. Wang, Nat. Nanotechnol. 2022, 17, 759–767.
- 6
- 6aH. Jiang, G. Chen, O. Savateev, J. Xue, L. X. Ding, Z. Liang, M. Antonietti, H. Wang, Angew. Chem. Int. Ed. 2023, 62, 202218717;
- 6bY. Wang, C. Wang, M. Li, Y. Yu, B. Zhang, Chem. Soc. Rev. 2021, 50, 6720–6733;
- 6cQ. Gao, H. S. Pillai, Y. Huang, S. Liu, Q. Mu, X. Han, Z. Yan, H. Zhou, Q. He, H. Xin, H. Zhu, Nat. Commun. 2022, 13, 2338.
- 7G. Zhang, X. Li, K. Chen, Y. Guo, D. Ma, K. Chu, Angew. Chem. Int. Ed. 2023, 62, 202300054.
- 8
- 8aW. Gao, K. Xie, J. Xie, X. Wang, H. Zhang, S. Chen, H. Wang, Z. Li, C. Li, Adv. Mater. 2023, 35, 2202952;
- 8bY. Wang, H. Li, W. Zhou, X. Zhang, B. Zhang, Y. Yu, Angew. Chem. Int. Ed. 2022, 61, 202202604;
- 8cD. Wang, Z. W. Chen, K. Gu, C. Chen, Y. Liu, X. Wei, C. V. Singh, S. Wang, J. Am. Chem. Soc. 2023, 145, 6899–6904;
- 8dK. Fan, W. Xie, J. Li, Y. Sun, P. Xu, Y. Tang, Z. Li, M. Shao, Nat. Commun. 2022, 13, 7958.
- 9
- 9aZ. Hou, J. Chu, C. Liu, J. Wang, A. Li, T. Lin, C. P. Francois-Xavier, Chem. Eng. J. 2021, 415;
- 9bG. Yang, P. Zhou, J. Liang, H. Li, F. Wang, Inorg. Chem. Front. 2023, 10, 4610–4631.
- 10
- 10aJ. Liu, T. Cheng, L. Jiang, A. Kong, Y. Shan, ACS Appl. Mater. Interfaces 2020, 12, 33186–33195;
- 10bH. Liu, J. Park, Y. Chen, Y. Qiu, Y. Cheng, K. Srivastava, S. Gu, B. H. Shanks, L. T. Roling, W. Li, ACS Catal. 2021, 11, 8431–8442.
- 11
- 11aL. Qin, F. Sun, Z. Gong, G. Ma, Y. Chen, Q. Tang, L. Qiao, R. Wang, Z.-Q. Liu, Z. Tang, ACS Nano 2023, 17, 12747–12758;
- 11bY. Liu, X.-M. Yao, X. Liu, Z. Liu, Y.-Q. Wang, Inorg. Chem. 2023, 62, 7525–7532;
- 11cF. Calle-Vallejo, M. Huang, J. B. Henry, M. T. M. Koper, A. S. Bandarenka, Phys. Chem. Chem. Phys. 2013, 15, 3196–3202.
- 12Z. Shen, Y. Yu, Z. Zhao, M. A. Mushtaq, Q. Ji, G. Yasin, L. N. U. Rehman, X. Liu, X. Cai, P. Tsiakaras, J. Zhao, Appl. Catal. B 2023, 331, 122687.
- 13
- 13aC. Cai, K. Liu, Y. Zhu, P. Li, Q. Wang, B. Liu, S. Chen, H. Li, L. Zhu, H. Li, Angew. Chem. Int. Ed. 2022, 134, 202113664;
- 13bT. Möller, F. Scholten, T. N. Thanh, I. Sinev, J. Timoshenko, X. Wang, Z. Jovanov, M. Gliech, B. Roldan Cuenya, A. S. Varela, Angew. Chem. Int. Ed. 2020, 132, 18130–18139;
10.1002/ange.202007136 Google Scholar
- 13cM. Sun, G. Wu, J. Jiang, Y. Yang, A. Du, L. Dai, X. Mao, Q. Qin, Angew. Chem. Int. Ed. 2023, 62, 202301957.
- 14
- 14aH. Jin, X. Liu, S. Chen, A. Vasileff, L. Li, Y. Jiao, L. Song, Y. Zheng, S.-Z. Qiao, ACS Energy Lett. 2019, 4, 805–810;
- 14bL. H. Zhang, Y. Jia, J. Zhan, G. Liu, G. Liu, F. Li, F. Yu, Angew. Chem. Int. Ed. 2023, 62, 202303483;
- 14cJ. Wang, Y. Wang, C. Cai, Y. Liu, D. Wu, M. Wang, M. Li, X. Wei, M. Shao, M. Gu, Nano Lett. 2023, 23, 1897–1903.
- 15
- 15aY. Wang, M. Zheng, Y. Li, C. Ye, J. Chen, J. Ye, Q. Zhang, J. Li, Z. Zhou, X. Z. Fu, J. Wang, S. G. Sun, D. Wang, Angew. Chem. Int. Ed. 2022, 61, 202115735;
- 15bP. Li, J. Bi, J. Liu, Y. Wang, X. Kang, X. Sun, J. Zhang, Z. Liu, Q. Zhu, B. Han, J. Am. Chem. Soc. 2023, 145, 4675–4682;
- 15cG. Zhang, N. Zhang, K. Chen, X. Zhao, K. Chu, J. Colloid Interface Sci. 2023, 649, 724–730;
- 15dG. Liu, W. Wang, P. Zeng, C. Yuan, L. Wang, H. Li, H. Zhang, X. Sun, K. Dai, J. Mao, X. Li, L. Zhang, Nano Lett. 2022, 22, 6366–6374;
- 15eN. Zhang, Y. Wan, K. Chen, G. Zhang, K. Chu, Nano Energy 2024, 125, 109594;
- 15fY. Qin, W. Zhang, F. Wang, J. Li, J. Ye, X. Sheng, C. Li, X. Liang, P. Liu, X. Wang, X. Zheng, Y. Ren, C. Xu, Z. Zhang, Angew. Chem. Int. Ed. 2022, 61, 202200899;
- 15gX. Cao, Y. Tian, J. Ma, W. Guo, W. Cai, J. Zhang, Adv. Mater. 2024, 36, 2309648.
- 16X. Fu, C. Wan, A. Zhang, Z. Zhao, H. Huyan, X. Pan, S. Du, X. Duan, Y. Huang, Nano Res. 2020, 13, 1472–1478.
- 17K. Feng, J. Xu, Y. Chen, S. Li, Z. Kang, J. Zhong, Adv. Sci. 2022, 9, 2203199.
- 18
- 18aJ. Xian, S. Li, H. Su, P. Liao, S. Wang, Y. Zhang, W. Yang, J. Yang, Y. Sun, Y. Jia, Q. Liu, Q. Liu, G. Li, Angew. Chem. Int. Ed. 2023, 62, 202304007;
- 18bY. Gorlin, B. Lassalle-Kaiser, J. D. Benck, S. Gul, S. M. Webb, V. K. Yachandra, J. Yano, T. F. Jaramillo, J. Am. Chem. Soc. 2013, 135, 8525–8534;
- 18cB. J. Trześniewski, O. Diaz-Morales, D. A. Vermaas, A. Longo, W. Bras, M. T. M. Koper, W. A. Smith, J. Am. Chem. Soc. 2015, 137, 15112–15121;
- 18dS. Zhao, Y. Wang, J. Dong, C.-T. He, H. Yin, P. An, K. Zhao, X. Zhang, C. Gao, L. Zhang, J. Lv, J. Wang, J. Zhang, A. M. Khattak, N. A. Khan, Z. Wei, J. Zhang, S. Liu, H. Zhao, Z. Tang, Nat. Energy 2016, 1, 1–10.
- 19H. Q. Fu, J. Liu, N. M. Bedford, Y. Wang, J. W. Sun, Y. Zou, M. Dong, J. Wright, H. Diao, P. Liu, H. G. Yang, H. Zhao, Adv. Mater. 2022, 34, 2202854.
- 20C. Wu, H. Xie, D. Li, D. Liu, S. Ding, S. Tao, H. Chen, Q. Liu, S. Chen, W. Chu, B. Zhang, L. Song, J. Phys. Chem. Lett. 2018, 9, 817–824.
- 21
- 21aY. Gu, S. Wang, H. Shi, J. Yang, S. Li, H. Zheng, W. Jiang, J. Liu, X. Zhong, J. Wang, ACS Catal. 2021, 11, 5438–5451;
- 21bJ.-C. Liu, X.-L. Ma, Y. Li, Y.-G. Wang, H. Xiao, J. Li, Nat. Commun. 2018, 9, 1610.
- 22H. Xu, Y. Ma, J. Chen, W.-X. Zhang, J. Yang, Chem. Soc. Rev. 2022, 51, 2710–2758.
- 23
- 23aY. Li, Y. K. Go, H. Ooka, D. He, F. Jin, S. H. Kim, R. Nakamura, Angew. Chem. Int. Ed. 2020, 59, 9744–9750;
- 23bG. E. Dima, A. C. A. de Vooys, M. T. M. Koper, J. Electroanal. Chem. 2003, 554–555, 15–23.
- 24P. Wang, M. Qiao, Q. Shao, Y. Pi, X. Zhu, Y. Li, X. Huang, Nat. Commun. 2018, 9, 4933.
- 25Y. Wang, W. Zhou, R. Jia, Y. Yu, B. Zhang, Angew. Chem. Int. Ed. 2020, 59, 5350–5354.
- 26M. C. Figueiredo, J. Souza-Garcia, V. Climent, J. M. Feliu, Electrochem. Commun. 2009, 11, 1760–1763.
- 27T. Y. Ken-Ichi Ataka, M. Osawa, J. Chem. Phys. 1996, 100, 10664–10672.
- 28
- 28aI. Katsounaros, M. C. Figueiredo, F. Calle-Vallejo, H. Li, A. A. Gewirth, N. M. Markovic, M. T. Koper, J. Catal. 2018, 359, 82–91;
- 28bY. Yao, S. Zhu, H. Wang, H. Li, M. Shao, J. Am. Chem. Soc. 2018, 140, 1496–1501.
- 29
- 29aH. Jiang, G. Chen, G. Hai, W. Wang, Z. Liang, L. X. Ding, Y. Yuan, J. Lu, M. Antonietti, H. Wang, Angew. Chem. Int. Ed. 2023, 62, 202305695;
- 29bY. Guo, R. Zhang, S. Zhang, Y. Zhao, Q. Yang, Z. Huang, B. Dong, C. Zhi, Energy Environ. Sci. 2021, 14, 3938–3944;
- 29cW. Zhu, F. Yao, Q. Wu, Q. Jiang, J. Wang, Z. Wang, H. Liang, Energy Environ. Sci. 2023, 6, 2483–2493;
- 29dX. Fan, C. Liu, Z. Li, Z. Cai, L. Ouyang, Z. Li, X. He, Y. Luo, D. Zheng, S. Sun, Y. Wang, B. Ying, Q. Liu, A. Farouk, M. S. Hamdy, F. Gong, X. Sun, Y. Zheng, Small 2023, 19, 2303424;
- 29eY. Li, J. Zhao, Q. Hu, T. Hao, H. Cao, X. Huang, Y. Liu, Y. Zhang, D. Lin, Y. Tang, Y. Cai, Mater. Today Energy 2022, 29, 101095.