A Supramolecular Deep Eutectic Electrolyte Enhancing Interfacial Stability and Solution Phase Discharge in Li−O2 Batteries
Wen Sun
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, 100081 Beijing, China
These authors contributed equally to this work.
Contribution: Conceptualization (lead), Data curation (lead), Formal analysis (lead), Investigation (lead), Supervision (lead), Writing - original draft (lead)
Search for more papers by this authorFengling Zhang
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, 100081 Beijing, China
These authors contributed equally to this work.
Contribution: Data curation (equal), Formal analysis (equal), Investigation (equal), Visualization (equal)
Search for more papers by this authorCorresponding Author
Dr. Jingning Lai
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, 100081 Beijing, China
Contribution: Conceptualization (equal), Funding acquisition (lead), Supervision (lead), Visualization (lead), Writing - review & editing (lead)
Search for more papers by this authorBohua Li
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, 100081 Beijing, China
Contribution: Data curation (supporting), Investigation (supporting), Resources (supporting)
Search for more papers by this authorXin Hu
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, 100081 Beijing, China
Contribution: Formal analysis (supporting), Supervision (supporting), Visualization (supporting)
Search for more papers by this authorBoshun Gui
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, 100081 Beijing, China
Contribution: Data curation (supporting), Investigation (supporting)
Search for more papers by this authorNuo Chen
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, 100081 Beijing, China
Contribution: Investigation (supporting)
Search for more papers by this authorCorresponding Author
Prof. Xingming Guo
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, 100081 Beijing, China
Contribution: Project administration (equal), Supervision (equal), Validation (lead)
Search for more papers by this authorProf. Zhujie Li
Advanced Technology Research Institute, Beijing Institute of Technology, 250300 Jinan, China
Contribution: Resources (equal), Software (equal), Validation (supporting)
Search for more papers by this authorProf. Nan Chen
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, 100081 Beijing, China
Advanced Technology Research Institute, Beijing Institute of Technology, 250300 Jinan, China
Contribution: Funding acquisition (supporting), Project administration (supporting), Validation (supporting)
Search for more papers by this authorProf. Li Li
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, 100081 Beijing, China
Advanced Technology Research Institute, Beijing Institute of Technology, 250300 Jinan, China
Collaborative Innovation Center of Electric Vehicles in Beijing, 100081 Beijing, China
Contribution: Funding acquisition (supporting), Project administration (equal), Validation (equal)
Search for more papers by this authorProf. Feng Wu
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, 100081 Beijing, China
Advanced Technology Research Institute, Beijing Institute of Technology, 250300 Jinan, China
Collaborative Innovation Center of Electric Vehicles in Beijing, 100081 Beijing, China
Contribution: Funding acquisition (equal), Resources (equal), Validation (equal)
Search for more papers by this authorCorresponding Author
Prof. Renjie Chen
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, 100081 Beijing, China
Advanced Technology Research Institute, Beijing Institute of Technology, 250300 Jinan, China
Collaborative Innovation Center of Electric Vehicles in Beijing, 100081 Beijing, China
Contribution: Conceptualization (lead), Funding acquisition (lead), Project administration (lead), Supervision (lead), Validation (lead), Writing - review & editing (lead)
Search for more papers by this authorWen Sun
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, 100081 Beijing, China
These authors contributed equally to this work.
Contribution: Conceptualization (lead), Data curation (lead), Formal analysis (lead), Investigation (lead), Supervision (lead), Writing - original draft (lead)
Search for more papers by this authorFengling Zhang
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, 100081 Beijing, China
These authors contributed equally to this work.
Contribution: Data curation (equal), Formal analysis (equal), Investigation (equal), Visualization (equal)
Search for more papers by this authorCorresponding Author
Dr. Jingning Lai
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, 100081 Beijing, China
Contribution: Conceptualization (equal), Funding acquisition (lead), Supervision (lead), Visualization (lead), Writing - review & editing (lead)
Search for more papers by this authorBohua Li
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, 100081 Beijing, China
Contribution: Data curation (supporting), Investigation (supporting), Resources (supporting)
Search for more papers by this authorXin Hu
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, 100081 Beijing, China
Contribution: Formal analysis (supporting), Supervision (supporting), Visualization (supporting)
Search for more papers by this authorBoshun Gui
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, 100081 Beijing, China
Contribution: Data curation (supporting), Investigation (supporting)
Search for more papers by this authorNuo Chen
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, 100081 Beijing, China
Contribution: Investigation (supporting)
Search for more papers by this authorCorresponding Author
Prof. Xingming Guo
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, 100081 Beijing, China
Contribution: Project administration (equal), Supervision (equal), Validation (lead)
Search for more papers by this authorProf. Zhujie Li
Advanced Technology Research Institute, Beijing Institute of Technology, 250300 Jinan, China
Contribution: Resources (equal), Software (equal), Validation (supporting)
Search for more papers by this authorProf. Nan Chen
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, 100081 Beijing, China
Advanced Technology Research Institute, Beijing Institute of Technology, 250300 Jinan, China
Contribution: Funding acquisition (supporting), Project administration (supporting), Validation (supporting)
Search for more papers by this authorProf. Li Li
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, 100081 Beijing, China
Advanced Technology Research Institute, Beijing Institute of Technology, 250300 Jinan, China
Collaborative Innovation Center of Electric Vehicles in Beijing, 100081 Beijing, China
Contribution: Funding acquisition (supporting), Project administration (equal), Validation (equal)
Search for more papers by this authorProf. Feng Wu
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, 100081 Beijing, China
Advanced Technology Research Institute, Beijing Institute of Technology, 250300 Jinan, China
Collaborative Innovation Center of Electric Vehicles in Beijing, 100081 Beijing, China
Contribution: Funding acquisition (equal), Resources (equal), Validation (equal)
Search for more papers by this authorCorresponding Author
Prof. Renjie Chen
Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, 100081 Beijing, China
Advanced Technology Research Institute, Beijing Institute of Technology, 250300 Jinan, China
Collaborative Innovation Center of Electric Vehicles in Beijing, 100081 Beijing, China
Contribution: Conceptualization (lead), Funding acquisition (lead), Project administration (lead), Supervision (lead), Validation (lead), Writing - review & editing (lead)
Search for more papers by this authorGraphical Abstract
The proposed supramolecular deep eutectic electrolyte (DEE) based on LiTFSI, acetamide and boric acid, improving the oxidation voltage up to 4.5 V, and enhancing the solution phase discharge mechanism by forming Li-bonds and H-bonds with Li+ and O2−. The introduction of boric acid also promotes the formation of inorganic-rich SEI, which induces Li+ uniform deposition. The Li−O2 battery with this DEE delivers ultrahigh discharge capacity, improved cycling performance and intrinsic safety.
Abstract
Li−O2 batteries (LOBs) have gained widespread recognition for their exceptional energy densities. However, a major challenge faced by LOBs is the lack of appropriate electrolytes that can effectively balance reactant transport, interfacial compatibility, and non-volatility. To address this issue, a novel supramolecular deep eutectic electrolyte (DEE) has been developed, based on synergistic interaction between Li-bonds and H-bonds through a combination of lithium salt (LiTFSI), acetamide (Ace) and boric acid (BA). The incorporation of BA serves as an interface modification additive, acting as both Li-bonds acceptor and H-bonds donor/acceptor, thereby enhancing the redox stability of the electrolyte, facilitating a solution phase discharge process and improving compatibility with the Li anode. Our proposed DEE demonstrates a high oxidation voltage of 4.5 V, an ultrahigh discharge capacity of 15225 mAh g−1 and stable cycling performance of 196 cycles in LOBs. Additionally, the intrinsic non-flammability and successful operation of a Li−O2 pouch cell indicate promising practical applications of this electrolyte. This research broadens the design possibilities for LOBs electrolytes and provides theoretical insights for future studies.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202409965-sup-0001-misc_information.pdf2.8 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aW. J. Kwak, Rosy, D. Sharon, C. Xia, H. Kim, L. R. Johnson, P. G. Bruce, L. F. Nazar, Y. K. Sun, A. A. Frimer, M. Noked, S. A. Freunberger, D. Aurbach, Chem. Rev. 2020, 120, 6626;
- 1bH. D. Lim, B. Lee, Y. Bae, H. Park, Y. Ko, H. Kim, J. Kim, K. Kang, Chem. Soc. Rev. 2017, 46, 2873;
- 1cC. Z. Shu, J. Z. Wang, J. P. Long, H. K. Liu, S. X. Dou, Adv. Mater. 2019, 31;
- 1dX. W. Chi, M. L. Li, J. C. Di, P. Bai, L. N. Song, X. X. Wang, F. Li, S. Liang, J. J. Xu, J. H. Yu, Nature 2021, 592, 551.
- 2
- 2aP. Zhang, Y. Zhao, X. B. Zhang, Chem. Soc. Rev. 2018, 47, 2921;
- 2bJ. N. Lai, Y. Xing, N. Chen, L. Li, F. Wu, R. J. Chen, Angew. Chem. Int. Ed. 2020, 59, 2974;
- 2cJ. Yi, S. H. Guo, P. He, H. S. Zhou, Energy Environ. Sci. 2017, 10, 860;
- 2dH. F. Wang, X. X. Wang, M. L. Li, L. J. Zheng, D. H. Guan, X. L. Huang, J. J. Xu, J. H. Yu, Adv. Mater. 2020, 32.
- 3
- 3aQ. Xiong, G. Huang, X. B. Zhang, Angew. Chem. Int. Ed. 2020, 59, 19311;
- 3bY. Ko, K. Kim, J. Yoo, G. Kwon, H. Park, J. Kim, B. Lee, J. H. Song, J. Kim, K. Kang, Energy Environ. Sci. 2023, 16, 5525;
- 3cZ. L. Jiang, B. Wen, Y. H. Huang, Y. H. Guo, Y. Z. Wang, F. J. Li, Angew. Chem. Int. Ed. 2024, 63.
- 4
- 4aX. H. Wu, B. Niu, H. T. Zhang, Z. G. Li, H. Y. Luo, Y. L. Tang, X. Y. Yu, L. Huang, X. R. He, X. Wang, Y. Qiao, S. G. Sun, Adv. Energy Mater. 2023, 13;
- 4bD. Wang, F. Zhang, P. He, H. S. Zhou, Angew. Chem. Int. Ed. 2019, 58, 2355;
- 4cX. D. Lin, Y. Gu, X. R. Shen, W. W. Wang, Y. H. Hong, Q. H. Wu, Z. Y. Zhou, D. Y. Wu, J. K. Chang, M. S. Zheng, B. W. Mao, Q. F. Dong, Energy Environ. Sci. 2021, 14, 1439.
- 5
- 5aQ. Xiong, C. L. Li, Z. W. Li, Y. L. Liang, J. C. Li, J. M. Yan, G. Huang, X. B. Zhang, Adv. Mater. 2022, 34;
- 5bC. Hwang, J. Yoo, G. Y. Jung, S. H. Joo, J. Kim, A. Cha, J. G. Han, N. S. Choi, S. J. Kang, S. Y. Lee, S. K. Kwak, H. K. Song, ACS Nano 2019, 13, 9190;
- 5cZ. J. Liang, Q. L. Zou, J. Xie, Y. C. Lu, Energy Environ. Sci. 2020, 13, 2870.
- 6
- 6aY. C. Cai, Q. Zhang, Y. Lu, Z. M. Hao, Y. X. Ni, J. Chen, Angew. Chem. Int. Ed. 2021, 60, 25973;
- 6bY. C. Cai, Y. P. Hou, Y. Lu, Q. Zhang, Z. H. Yan, J. Chen, Angew. Chem. Int. Ed. 2023, 62;
- 6cX. X. Wang, D. H. Guan, C. L. Miao, J. X. Li, J. Y. Li, X. Y. Yuan, X. Y. Ma, J. J. Xu, Adv. Energy Mater. 2024, 14.
- 7
- 7aS. S. H. Zaidi, X. L. Li, Adv. Energy Mater. 2023, 13;
- 7bJ. Xiao, Science 2019, 366, 426;
- 7cY. Y. Lu, K. Korf, Y. Kambe, Z. Y. Tu, L. A. Archer, Angew. Chem. Int. Ed. 2014, 53, 488;
- 7dF. Sun, R. Gao, D. Zhou, M. Osenberg, K. Dong, N. Kardjilov, A. Hilger, H. Markötter, P. M. Bieker, X. F. Liu, I. Manke, ACS Energy Lett. 2019, 4, 306;
- 7eZ. Gu, X. Xin, Z. L. Xu, J. He, J. H. Wu, Y. Sun, X. Y. Yao, Adv. Funct. Mater. 2023, 33;
- 7fD. R. MacFarlane, M. Forsyth, P. C. Howlett, M. Kar, S. Passerini, J. M. Pringle, H. Ohno, M. Watanabe, F. Yan, W. J. Zheng, S. G. Zhang, J. Zhang, Nat. Rev. Mater. 2016, 1.
- 8
- 8aP. Janicka, M. Kaykhaii, J. Plotka-Wasylka, J. Gebicki, Green Chem. 2022, 24, 5035;
- 8bQ. F. Zheng, Y. Yamada, R. Shang, S. Ko, Y. Y. Lee, K. Kim, E. Nakamura, A. Yamada, Nat. Energy 2020, 5, 291;
- 8cQ. Zhou, J. Ma, S. M. Dong, X. F. Li, G. L. Cui, Adv. Mater. 2019, 31;
- 8dC. B. Cooper, J. H. O. Kang, Y. K. Yin, Z. A. Yu, H. C. Wu, S. Nikzad, Y. Ochiai, H. P. Yan, W. Cai, Z. N. Bao, J. Am. Chem. Soc. 2020, 142, 16814;
- 8eX. X. Chen, S. S. Yan, T. H. Tan, P. Zhou, J. X. Hou, X. N. Feng, H. Dong, P. C. Wang, D. Wang, B. G. Wang, M. G. Ouyang, K. Liu, Energy Storage Mater. 2022, 45, 182;
- 8fL. S. Geng, X. P. Wang, K. Han, P. Hu, L. Zhou, Y. L. Zhao, W. Luo, L. Q. Mai, ACS Energy Lett. 2022, 7, 247.
- 9C. K. Zhang, L. Y. Zhang, G. H. Yu, Acc. Chem. Res. 2020, 53, 1648.
- 10
- 10aJ. X. Wu, Q. H. Liang, X. L. Yu, Q. F. Lu, L. B. Ma, X. Y. Qin, G. H. Chen, B. H. Li, Adv. Funct. Mater. 2021, 31;
- 10bJ. H. Song, Y. B. Si, W. Guo, D. H. Wang, Y. Z. Fu, Angew. Chem. Int. Ed. 2021, 60, 9881.
- 11
- 11aJ. Lu, L. Li, J. B. Park, Y. K. Sun, F. Wu, K. Amine, Chem. Rev. 2014, 114, 5611;
- 11bC. L. Li, G. Huang, Y. Yu, Q. Xiong, J. M. Yan, X. B. Zhang, J. Am. Chem. Soc. 2022, 144, 5827.
- 12
- 12aX. P. Pei, Y. J. Li, T. Ou, X. C. Liang, Y. Yang, E. N. Jia, Y. Tan, S. J. Guo, Angew. Chem. Int. Ed. 2022, 61;
- 12bJ. N. Zhang, H. Wu, X. F. Du, H. Zhang, L. Huang, F. Sun, T. T. Liu, S. W. Tian, L. X. Zhou, S. J. Hu, Z. X. Yuan, B. T. Zhang, J. J. Zhang, G. L. Cui, Adv. Energy Mater. 2023, 13.
- 13
- 13aY. H. Liang, W. B. Wu, D. P. Li, H. Wu, C. C. Gao, Z. J. Chen, L. J. Ci, J. H. Zhang, Adv. Energy Mater. 2022, 12;
- 13bZ. L. Hu, F. Xian, Z. Y. Guo, C. L. Lu, X. F. Du, X. Y. Cheng, S. Zhang, S. M. Dong, G. L. Cui, L. Q. Chen, Chem. Mater. 2020, 32, 3405.
- 14A. Boisset, S. Menne, J. Jacquemin, A. Balducci, M. Anouti, Phys. Chem. Chem. Phys. 2013, 15, 20054.
- 15
- 15aR. J. Chen, F. Wu, H. Y. Liang, L. Li, B. Xu, J. Electrochem. Soc. 2005, 152, A1979;
- 15bD. H. Kerridge, Chem. Soc. Rev. 1988, 17, 181;
- 15cV. S. Bryantsev, V. Giordani, W. Walker, M. Blanco, S. Zecevic, K. Sasaki, J. Uddin, D. Addison, G. V. Chase, J. Phys. Chem. A 2011, 115, 12399.
- 16
- 16aH. Chen, K. Chen, J. Y. Yang, B. L. Liu, L. B. Luo, H. Li, L. Chen, A. Zhao, X. M. Liang, J. W. Feng, Y. J. Fang, Y. L. Cao, J. Am. Chem. Soc. 2024, 146, 15751;
- 16bD. Brouillette, D. E. Irish, N. J. Taylor, G. Perron, M. Odziemkowski, J. E. Desnoyers, Phys. Chem. Chem. Phys. 2002, 4, 6063;
- 16cH. L. Xie, H. R. Cheng, P. Kumar, Y. Q. Wang, H. H. Liang, T. Cai, F. Zhao, Z. Cao, L. Cavallo, Z. Ma, Q. Li, J. Ming, ACS Nano 2024, 18, 22503.
- 17
- 17aT. Z. Hou, W. T. Xu, X. Chen, H. J. Peng, J. Q. Huang, Q. Zhang, Angew. Chem. Int. Ed. 2017, 56, 8178;
- 17bP. Ranjan, S. Pillitteri, G. Coppola, M. Oliva, E. V. Van der Eycken, U. K. Sharma, ACS Catal. 2021, 11, 10862;
- 17cD. Ajami, H. Dube, J. Rebek, J. Am. Chem. Soc. 2011, 133, 9689.
- 18C. Jiang, Q. Q. Jia, M. Tang, K. Fan, Y. Chen, M. X. Sun, S. F. Xu, Y. C. Wu, C. Y. Zhang, J. Ma, C. L. Wang, W. P. Hu, Angew. Chem. Int. Ed. 2021, 60, 10871.
- 19F. L. Zhang, J. N. Lai, Z. Q. Hu, A. B. Zhou, H. R. Wang, X. Hu, L. J. Hou, B. H. Li, W. Sun, N. Chen, L. Li, F. Wu, R. J. Chen, Angew. Chem. Int. Ed. 2023, 62.
- 20J. N. Lai, H. X. Liu, Y. Xing, L. Y. Zhao, Y. X. Shang, Y. X. Huang, N. Chen, L. Li, F. Wu, R. J. Chen, Adv. Funct. Mater. 2021, 31.
- 21
- 21aD. Aurbach, B. D. McCloskey, L. F. Nazar, P. G. Bruce, Nat. Energy 2016, 1;
- 21bN. N. Feng, P. He, H. S. Zhou, Adv. Energy Mater. 2016, 6;
- 21cD. M. Itkis, D. A. Semenenko, E. Y. Kataev, A. I. Belova, V. S. Neudachina, A. P. Sirotina, M. Hävecker, D. Teschner, A. Knop-Gericke, P. Dudin, A. Barinov, E. A. Goodilin, Y. Shao-Horn, L. V. Yashina, Nano Lett. 2013, 13, 4697;
- 21dZ. W. Zhao, J. Huang, Z. Q. Peng, Angew. Chem. Int. Ed. 2018, 57, 3874;
- 21eS. H. Oh, R. Black, E. Pomerantseva, J. H. Lee, L. F. Nazar, Nat. Chem. 2012, 4, 1004;
- 21fB. D. McCloskey, A. Speidel, R. Scheffler, D. C. Miller, V. Viswanathan, J. S. Hummelshoj, J. K. Norskov, A. C. Luntz, J. Phys. Chem. Lett. 2012, 3, 997.
- 22
- 22aQ. Zhang, Y. K. Li, E. T. Poh, Z. X. Xing, M. S. Zhang, M. Wang, Z. J. Sun, J. S. Pan, S. V. C. Vummaleti, J. Zhang, W. Chen, Adv. Energy Mater. 2023, 13;
- 22bQ. Zhang, S. J. Rao, S. V. C. Vummaleti, E. T. Poh, W. R. Dai, X. H. Cui, J. S. Wu, J. Zhang, W. Chen, Adv. Energy Mater. 2022, 12;
- 22cW. R. Dai, X. H. Cui, Y. Zhou, Y. Zhao, L. Wang, L. M. Peng, W. Chen, Small Methods 2019, 3;
- 22dJ. Q. Zhang, Y. F. Zhao, B. Sun, Y. Xie, A. Tkacheva, F. L. Qiu, P. He, H. S. Zhou, K. Yan, X. Guo, S. J. Wang, A. M. McDonagh, Z. Q. Peng, J. Lu, G. X. Wang, Sci. Adv. 2022, 8;
- 22eJ. B. Park, S. H. Lee, H. G. Jung, D. Aurbach, Y. K. Sun, Adv. Mater. 2018, 30;
- 22fC. J. Zhang, N. Dandu, S. Rastegar, S. N. Misal, Z. Hemmat, A. T. Ngo, L. A. Curtiss, A. Salehi-Khojin, Adv. Energy Mater. 2020, 10.
- 23
- 23aT. Lu, F. W. Chen, J. Comput. Chem. 2012, 33, 580;
- 23bT. Lu, F. W. Chen, J. Mol. Graphics Modell. 2012, 38, 314;
- 23cJ. Zhang, T. Lu, Phys. Chem. Chem. Phys. 2021, 23, 20323;
- 23dM. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Wallingford, CT 2016;
- 23eG. A. Petersson, A. Bennett, T. G. Tensfeldt, M. A. Allaham, W. A. Shirley, J. Mantzaris, J. Chem. Phys. 1988, 89, 2193;
- 23fP. C. Hariharan, J. A. Pople, Mol. Phys. 1974, 27, 209.
- 24L. Johnson, C. M. Li, Z. Liu, Y. H. Chen, S. A. Freunberger, P. C. Ashok, B. B. Praveen, K. Dholakia, J. M. Tarascon, P. G. Bruce, Nat. Chem. 2014, 6, 1091.
- 25
- 25aB. D. McCloskey, R. Scheffler, A. Speidel, G. Girishkumar, A. C. Luntz, J. Phys. Chem. C 2012, 116, 23897;
- 25bN. B. Aetukuri, B. D. McCloskey, J. M. García, L. E. Krupp, V. Viswanathan, A. C. Luntz, Nat. Chem. 2015, 7, 50.
- 26
- 26aX. W. Gao, Y. H. Chen, L. Johnson, P. G. Bruce, Nat. Mater. 2016, 15, 882;
- 26bN. B. Aetukuri, B. D. McCloskey, J. M. García, L. E. Krupp, V. Viswanathan, A. C. Luntz, Nat. Chem. 2015, 7, 50.
- 27H. Yan, W. W. Wang, T. R. Wu, Y. Gu, K. X. Li, D. Y. Wu, M. S. Zheng, Q. F. Dong, J. W. Yan, B. W. Mao, J. Am. Chem. Soc. 2023, 145, 11959.
- 28
- 28aY. Jin, P. M. L. Le, P. Y. Gao, Y. B. Xu, B. W. Xiao, M. H. Engelhard, X. Cao, T. D. Vo, J. T. Hu, L. R. Zhong, B. E. Matthews, R. Yi, C. M. Wang, X. L. Li, J. Liu, J. G. Zhang, Nat. Energy 2022, 7, 718;
- 28bJ. J. Xu, V. Koverga, A. Phan, A. M. Li, N. Zhang, M. Baek, C. Jayawardana, B. L. Lucht, A. T. Ngo, C. S. Wang, Adv. Mater. 2024, 36.
- 29Z. M. Huang, J. Ren, W. Zhang, M. L. Xie, Y. K. Li, D. Sun, Y. Shen, Y. H. Huang, Adv. Mater. 2018, 30.
- 30
- 30aX. L. Fan, L. Chen, O. Borodin, X. Ji, J. Chen, S. Hou, T. Deng, J. Zheng, C. Y. Yang, S. C. Liou, K. Amine, K. Xu, C. S. Wang, Nat. Nanotechnol. 2018, 13, 715;
- 30bF. Li, J. He, J. D. Liu, M. G. Wu, Y. Y. Hou, H. P. Wang, S. H. Qi, Q. H. Liu, J. W. Hu, J. M. Ma, Angew. Chem. Int. Ed. 2021, 60, 6600;
- 30cZ. Shadike, H. Lee, O. Borodin, X. Cao, X. L. Fan, X. L. Wang, R. Q. Lin, S. M. Bak, S. Ghose, K. Xu, C. S. Wang, J. Liu, J. Xiao, X. Q. Yang, E. Y. Hu, Nat. Nanotechnol. 2021, 16, 549;
- 30dX. Hu, Y. T. Ma, J. Qian, W. J. Qu, Y. Li, R. Luo, H. R. Wang, A. B. Zhou, Y. Chen, K. Q. Shi, L. Li, F. Wu, R. J. Chen, Adv. Mater. 2024, 36.
- 31
- 31aF. L. Qiu, X. Li, H. Deng, D. Wang, X. W. Mu, P. He, H. S. Zhou, Adv. Energy Mater. 2019, 9;
- 31bQ. D. Wang, Z. P. Yao, C. L. Zhao, T. Verhallen, D. P. Tabor, M. Liu, F. Ooms, F. Y. Kang, A. Aspuru-Guzik, Y. S. Hu, M. Wagemaker, B. H. Li, Nat. Commun. 2020, 11;
- 31cH. H. Xu, Y. T. Li, A. J. Zhou, N. Wu, S. Xin, Z. Y. Li, J. B. Goodenough, Nano Lett. 2018, 18, 7414;
- 31dH. P. Zeng, K. Yu, J. W. Li, M. M. Yuan, J. J. Wang, Q. R. Wang, A. J. Lai, Y. D. Jiang, X. Yan, G. Z. Zhang, H. L. Xu, J. Wang, W. Huang, C. Y. Wang, Y. H. Deng, S. S. Chi, ACS Nano 2024, 18, 1969.
- 32K. Xu, M. S. Ding, S. S. Zhang, J. L. Allen, T. R. Jow, J. Electrochem. Soc. 2002, 149, A622.