Highly Dispersed Pd-CeOx Nanoparticles in Zeolite Nanosheets for Efficient CO2-Mediated Hydrogen Storage and Release
Chengxu Li
Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123 P. R. China
These authors contributed equally.
Search for more papers by this authorGuangyuan He
School of Materials Science and Engineering and School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387 P. R. China
These authors contributed equally.
Search for more papers by this authorZiqiang Qu
Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123 P. R. China
Search for more papers by this authorKai Zhang
Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123 P. R. China
Search for more papers by this authorLiwen Guo
Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123 P. R. China
Search for more papers by this authorProf. Tianjun Zhang
State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding, 071002 P. R. China
Search for more papers by this authorProf. Jichao Zhang
Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Qiming Sun
Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Donghai Mei
School of Materials Science and Engineering and School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387 P. R. China
Search for more papers by this authorProf. Jihong Yu
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Center of Future Science, College of Chemistry, Jilin University, Changchun, 130012 P. R. China
Search for more papers by this authorChengxu Li
Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123 P. R. China
These authors contributed equally.
Search for more papers by this authorGuangyuan He
School of Materials Science and Engineering and School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387 P. R. China
These authors contributed equally.
Search for more papers by this authorZiqiang Qu
Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123 P. R. China
Search for more papers by this authorKai Zhang
Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123 P. R. China
Search for more papers by this authorLiwen Guo
Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123 P. R. China
Search for more papers by this authorProf. Tianjun Zhang
State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University, Baoding, 071002 P. R. China
Search for more papers by this authorProf. Jichao Zhang
Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Qiming Sun
Innovation Center for Chemical Science, College of Chemistry, Chemical Engineering and Materials Science, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Donghai Mei
School of Materials Science and Engineering and School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387 P. R. China
Search for more papers by this authorProf. Jihong Yu
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Center of Future Science, College of Chemistry, Jilin University, Changchun, 130012 P. R. China
Search for more papers by this authorGraphical Abstract
This study introduces the synthesis of bimetallic Pd-based nanocatalysts on zeolite nanosheets, demonstrating exceptional catalytic performance in formic acid dehydrogenation and CO2 hydrogenation to formate. The outstanding catalytic performance is attributed to significantly enhanced thermal stability, metal utilization, and transport efficiency. These findings offer crucial insights for advancing safe, efficient, and sustainable hydrogen technology development.
Abstract
Formic acid (FA) dehydrogenation and CO2 hydrogenation to FA/formate represent promising methodologies for the efficient and clean storage and release of hydrogen, forming a CO2-neutral energy cycle. Here, we report the synthesis of highly dispersed and stable bimetallic Pd-based nanoparticles, immobilized on self-pillared silicalite-1 (SP-S-1) zeolite nanosheets using an incipient wetness co-impregnation technique. Owing to the highly accessible active sites, effective mass transfer, exceptional hydrophilicity, and the synergistic effect of the bimetallic species, the optimized PdCe0.2/SP-S-1 catalyst demonstrated unparalleled catalytic performance in both FA dehydrogenation and CO2 hydrogenation to formate. Remarkably, it achieved a hydrogen generation rate of 5974 molH2 molPd−1 h−1 and a formate production rate of 536 molformate molPd−1 h−1 at 50 °C, surpassing most previously reported heterogeneous catalysts under similar conditions. Density functional theory calculations reveal that the interfacial effect between Pd and cerium oxide clusters substantially reduces the activation barriers for both reactions, thereby increasing the catalytic performance. Our research not only showcases a compelling application of zeolite nanosheet-supported bimetallic nanocatalysts in CO2-mediated hydrogen storage and release but also contributes valuable insights towards the development of safe, efficient, and sustainable hydrogen technologies.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202409001-sup-0001-misc_information.pdf2.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aA. M. Abdalla, S. Hossain, O. B. Nisfindy, A. T. Azad, M. Dawood, A. K. Azad, Energy Convers. Manage. 2018, 165, 602–627;
- 1bJ. O. Abe, A. P. I. Popoola, E. Ajenifuja, O. M. Popoola, Int. J. Hydrogen Energy 2019, 44, 15072–15086.
- 2
- 2aQ. Yao, X. Zhang, Z. H. Lu, Q. Xu, Coord. Chem. Rev. 2023, 493, 215302;
- 2bH. Wen, Y. Liu, S. Liu, Z. Peng, X. Wu, H. Yuan, J. Jiang, B. Li, Small 2024, 20, 2305405;
- 2cS. J. Li, Y. T. Zhou, X. Kang, D. X. Liu, L. Gu, Q. H. Zhang, J. M. Yan, Q. Jiang, Adv. Mater. 2019, 31, 1806781;
- 2dA. Schneemann, J. L. White, S. Kang, S. Jeong, L. F. Wan, E. S. Cho, T. W. Heo, D. Prendergast, J. J. Urban, B. C. Wood, M. D. Allendorf, V. Stavila, Chem. Rev. 2018, 118, 10775–10839.
- 3
- 3aS. Bai, A. Jia, J. Song, S. Cao, N. Wang, X. Liu, Chem. Eng. J. 2023, 474, 145612;
- 3bS. Ashraf, Y. Liu, H. Wei, R. Shen, H. Zhang, X. Wu, S. Mehdi, T. Liu, B. Li, Small 2023, 19, 2303031;
- 3cS. Guan, Y. Liu, H. Zhang, R. Shen, H. Wen, N. Kang, J. Zhou, B. Liu, Y. Fan, J. Jiang, B. Li, Adv. Sci. 2023, 10, 2300726;
- 3dS. Jiang, J. Yang, S. Zhai, L. Zhang, R. Tu, T. Yu, D. Zhai, L. Sun, W. Deng, G. Ren, ACS Catal. 2022, 12, 14113–14122;
- 3eZ. Chen, K. O. Kirlikovali, K. B. Idrees, M. C. Wasson, O. K. Farha, Chem 2022, 8, 693–716;
- 3fM. D. Allendorf, V. Stavila, J. L. Snider, M. Witman, M. E. Bowden, K. Brooks, B. L. Tran, T. Autrey, Nat. Chem. 2022, 14, 1214–1223;
- 3gL. Zhang, K. Zhang, C. Wang, Y. Liu, X. Wu, Z. Peng, H. Cao, B. Li, J. Jiang, Small 2021, 17, 2102201;
- 3hC. Wang, D. Astruc, Chem. Soc. Rev. 2021, 50, 3437–3484;
- 3iR. Nie, Y. Tao, Y. Nie, T. Lu, J. Wang, Y. Zhang, X. Lu, C. C. Xu, ACS Catal. 2021, 11, 1071–1095;
- 3jQ. Yao, Y. Ding, Z. H. Lu, Inorg. Chem. Front. 2020, 7, 3837–3874;
- 3kQ. Sun, N. Wang, Q. Xu, J. Yu, Adv. Mater. 2020, 32, 2001818;
- 3lM. S. Nasir, G. Yang, I. Ayub, S. Wang, L. Wang, X. Wang, W. Yan, S. Peng, S. Ramakarishna, Appl. Catal. B 2019, 257, 117855;
- 3mK. Sordakis, C. Tang, L. K. Vogt, H. Junge, P. J. Dyson, M. Beller, G. Laurenczy, Chem. Rev. 2018, 118, 372–433;
- 3nS. Mukherjee, S. V. Devaguptapu, A. Sviripa, C. R. F. Lund, G. Wu, Appl. Catal. B 2018, 226, 162–181;
- 3oQ. L. Zhu, Q. Xu, Energy Environ. Sci. 2015, 8, 478–512.
- 4
- 4aK. Zhang, N. Wang, Y. Meng, T. Zhang, P. Zhao, Q. Sun, J. Yu, Chem. Sci. 2024, 15, 379–388;
- 4bJ. Wang, Y. Yu, H. Yu, W. Wang, L. L. Shen, G. R. Zhang, D. Mei, ACS Catal. 2023, 13, 5135–5146;
- 4cW. F. Peng, X. Sun, Y. Ding, P. Liu, Q. Yao, Z. H. Lu, ACS Sustainable Chem. Eng. 2023, 11, 1898–1908;
- 4dS. Li, C. Zhou, J. Hu, A. Duan, C. Xu, X. Wang, J. Catal. 2023, 426, 153–161;
- 4eM. Karatok, H. T. Ngan, X. Jia, C. R. O'Connor, J. A. Boscoboinik, D. J. Stacchiola, P. Sautet, R. J. Madix, J. Am. Chem. Soc. 2023, 145, 5114–5124;
- 4fZ. Chen, C. A. M. Stein, R. Qu, N. Rockstroh, S. Bartling, J. Weiß, C. Kubis, K. Junge, H. Junge, M. Beller, ACS Catal. 2023, 13, 4835–4841;
- 4gL. Zou, M. Kitta, J. Hong, K. Suenaga, N. Tsumori, Z. Liu, Q. Xu, Adv. Mater. 2019, 31, 1900440;
- 4hH. Zhong, M. Iguchi, M. Chatterjee, Y. Himeda, Q. Xu, H. Kawanami, Adv. Sustainable Syst. 2018, 2, 1700161;
- 4iQ. Sun, N. Wang, Q. Bing, R. Si, J. Liu, R. Bai, P. Zhang, M. Jia, J. Yu, Chem 2017, 3, 477–493;
- 4jN. Wang, Q. Sun, R. Bai, X. Li, G. Guo, J. Yu, J. Am. Chem. Soc. 2016, 138, 7484–7487.
- 5
- 5aJ. Qu, S. Li, Z. Deng, J. Hu, X. Yang, Y. Cai, F. Du, B. Zhong, C. M. Li, Q. Sun, Chem. Eng. J. 2023, 467, 143405;
- 5bK. J. Betsy, A. Lazar, A. Pavithran, C. P. Vinod, ACS Sustainable Chem. Eng. 2020, 8, 14765–14774;
- 5cK. Mori, T. Sano, H. Kobayashi, H. Yamashita, J. Am. Chem. Soc. 2018, 140, 8902–8909;
- 5dQ. Sun, X. Fu, R. Si, C. H. Wang, N. Yan, ChemCatChem 2019, 11, 5093–5097.
- 6
- 6aY. Ding, X. Sun, W. F. Peng, L. Zhang, S. Meng, Q. Yao, G. Feng, Z. H. Lu, Ind. Eng. Chem. Res. 2023, 62, 6963–6972;
- 6bA. Zhang, J. Xia, Q. Yao, Z. H. Lu, Appl. Catal. B 2022, 309, 121278;
- 6cM. Deng, J. Ma, C. Yang, T. Cao, M. Yao, F. Liu, H. Chen, X. Wang, Mater. Today Chem. 2022, 24, 101001;
- 6dQ. Sun, B. W. J. Chen, N. Wang, Q. He, A. Chang, C. M. Yang, H. Asakura, T. Tanaka, M. J. Hülsey, C. H. Wang, J. Yu, N. Yan, Angew. Chem. Int. Ed. 2020, 59, 20183–20191;
- 6eQ. Wang, L. Chen, Z. Liu, N. Tsumori, M. Kitta, Q. Xu, Adv. Funct. Mater. 2019, 29, 1903341.
- 7
- 7aZ. Qu, Q. Sun, Inorg. Chem. Front. 2022, 9, 3095–3115;
- 7bJ. Li, K. Zhang, N. Wang, Q. Sun, Chem. J. Chin. Univ. 2022, 43, 20220032;
- 7cQ. Sun, N. Wang, J. Yu, Adv. Mater. 2021, 33, 2104442;
- 7dL. Liu, A. Corma, Nat. Rev. Mater. 2021, 6, 244–263;
- 7eY. Chai, W. Dai, G. Wu, N. Guan, L. Li, Acc. Chem. Res. 2021, 54, 2894–2904;
- 7fH. Wang, L. Wang, F. S. Xiao, ACS Cent. Sci. 2020, 6, 1685–1697;
- 7gS. M. Wu, X. Y. Yang, C. Janiak, Angew. Chem. Int. Ed. 2019, 58, 12340–12354;
- 7hN. Wang, Q. Sun, J. Yu, Adv. Mater. 2019, 31, 1803966;
- 7iL. H. Chen, M. H. Sun, Z. Wang, W. Yang, Z. Xie, B. L. Su, Chem. Rev. 2020, 120, 11194–11294;
- 7jZ. Qu, G. He, T. Zhang, Y. Fan, Y. Guo, M. Hu, J. Xu, Y. Ma, J. Zhang, W. Fan, Q. Sun, D. Mei, J. Yu, J. Am. Chem. Soc. 2024, 146, 8939–8948.
- 8
- 8aM. Song, B. Zhang, Z. Zhai, S. Liu, L. Wang, G. Liu, Ind. Eng. Chem. Res. 2023, 62, 3853–3861;
- 8bX. Wang, Y. Ma, Q. Wu, Y. Wen, F. S. Xiao, Chem. Soc. Rev. 2022, 51, 2431–2443;
- 8cC. Wang, W. Fang, Z. Liu, L. Wang, Z. Liao, Y. Yang, H. Li, L. Liu, H. Zhou, X. Qin, S. Xu, X. Chu, Y. Wang, A. Zheng, F. S. Xiao, Nat. Nanotechnol. 2022, 17, 714–720;
- 8dL. Meng, X. Zhu, E. J. M. Hensen, ACS Catal. 2017, 7, 2709–2719;
- 8eN. Wang, Q. Sun, T. Zhang, A. Mayoral, L. Li, X. Zhou, J. Xu, P. Zhang, J. Yu, J. Am. Chem. Soc. 2021, 143, 6905–6914;
- 8fL. Qi, Y. Zhang, M. Babucci, C. Chen, P. Lu, J. Li, C. Dun, A. S. Hoffman, J. J. Urban, M. Tsapatsis, S. R. Bare, Y. Han, B. C. Gates, A. T. Bell, ACS Catal. 2022, 12, 11177–11189.
- 9
- 9aH. Wu, W. Huang, J. Zhang, T. Du, J. Wang, Z. Xu, R. Xu, C. Meng, X. Guo, L. Ren, M. Tsapatsis, Microporous Mesoporous Mater. 2022, 341, 112068;
- 9bL. Ren, Q. Guo, P. Kumar, M. Orazov, D. Xu, S. M. Alhassan, K. A. Mkhoyan, M. E. Davis, M. Tsapatsis, Angew. Chem. Int. Ed. 2015, 54, 10848–10851.
- 10
- 10aY. Liu, Z. Liu, Y. Hui, L. Wang, J. Zhang, X. Yi, W. Chen, C. Wang, H. Wang, Y. Qin, L. Song, A. Zheng, F. S. Xiao, Nat. Commun. 2023, 14, 2531;
- 10bL. Qi, Y. Zhang, M. A. Conrad, C. K. Russell, J. Miller, A. T. Bell, J. Am. Chem. Soc. 2020, 142, 14674–14687.
- 11C. Wang, Z. Liu, L. Wang, X. Dong, J. Zhang, G. Wang, S. Han, X. Meng, A. Zheng, F. S. Xiao, ACS Catal. 2018, 8, 474–481.
- 12
- 12aZ. Yuan, T. Cao, M. Deng, J. Ma, S. Geng, C. Yang, Y. Ren, M. Yao, F. Liu, X. Wang, Fuel 2023, 346, 128333;
- 12bY. Huang, B. Long, M. Tang, Z. Rui, M. S. Balogun, Y. Tong, H. Ji, Appl. Catal. B 2016, 181, 779–787.
- 13
- 13aL. Fan, J. Zhang, K. Ma, Y. Zhang, Y. M. Hu, L. Kong, A. P. Jia, Z. Zhang, W. Huang, J. Q. Lu, J. Catal. 2021, 397, 116–127;
- 13bS. Masuda, K. Mori, Y. Futamura, H. Yamashita, ACS Catal. 2018, 8, 2277–2285;
- 13cH. Song, N. Zhang, C. Zhong, Z. Liu, M. Xiao, H. Gai, New J. Chem. 2017, 41, 9170–9177.
- 14B. Hammer, J. K. Nørskov, Adv. Catal. 2000, 45, 71–129.
- 15V. L. Deringer, A. L. Tchougréeff, R. Dronskowski, J. Phys. Chem. A 2011, 115, 5461–5466.