Customized Photoelectrochemical C−N and C−P Bond Formation Enabled by Tailored Deposition on Photoanodes
Corresponding Author
Dr. Jinghao Wang
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorCaoyu Yang
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
These authors contributed equally to this work.
Contribution: Investigation (supporting), Methodology (supporting), Visualization (equal), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorHuiwen Gao
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorLulu Zuo
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorZhiyu Guo
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorDr. Pengqi Yang
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 P. R. China
Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230031 P. R. China
Search for more papers by this authorSiyang Li
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorProf. Zhiyong Tang
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Jinghao Wang
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorCaoyu Yang
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
These authors contributed equally to this work.
Contribution: Investigation (supporting), Methodology (supporting), Visualization (equal), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorHuiwen Gao
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorLulu Zuo
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorZhiyu Guo
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorDr. Pengqi Yang
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 P. R. China
Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, 230031 P. R. China
Search for more papers by this authorSiyang Li
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorProf. Zhiyong Tang
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 P. R. China
University of Chinese Academy of Sciences, Beijing, 100049 P. R. China
Search for more papers by this authorGraphical Abstract
With customized designs of the deposition layer on the BiVO4 photoanode, two PEC systems were developed for highly efficient catalytic C−N and C−P bond formation. The modified BiVO4@Al2O3 demonstrated substantial performances for important yet challenging coupling between amides and xanthenes under aerobic conditions, whereas BiVO4@Ni1Co7Pi manifested its versatility in C−P coupling between aryl bromides and diphenylphosphine oxide, facilitated by a Ni-catalyzed cycle under ultralow potentials.
Abstract
Photoelectrochemistry (PEC) is burgeoning as an innovative solution to organic synthesis. However, the current PEC systems suffer from limited reaction types and unsatisfactory performances. Herein, we employ efficient BiVO4 photoanodes with tailored deposition layers for customizing two PEC approaches toward C−N and C−P bond formation. Our process proceeds under mild reaction conditions, deploying easily available substrates and ultra-low potentials. Beyond photocatalysis and electrocatalysis, customized PEC offers high efficiency, good functional group tolerance, and substantial applicability for decorating drug molecules, highlighting its promising potential to enrich the synthetic toolbox for broader organic chemistry of practical applications.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202408901-sup-0001-misc_information.pdf9.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aL. F. T. Novaes, J. Liu, Y. Shen, L. Lu, J. M. Meinhardt, S. Lin, Chem. Soc. Rev. 2021, 50, 7941–8002;
- 1bC. A. Malapit, M. B. Prater, J. R. Cabrera-Pardo, M. Li, T. D. Pham, T. P. McFadden, S. Blank, S. D. Minteer, Chem. Rev. 2022, 122, 3180–3218;
- 1cP. R. D. Murray, J. H. Cox, N. D. Chiappini, C. B. Roos, E. A. McLoughlin, B. G. Hejna, S. T. Nguyen, H. H. Ripberger, J. M. Ganley, E. Tsui, N. Y. Shin, B. Koronkiewicz, G. Qiu, R. R. Knowles, Chem. Rev. 2022, 122, 2017–2291;
- 1dN. E. S. Tay, D. Lehnherr, T. Rovis, Chem. Rev. 2022, 122, 2487–2649.
- 2
- 2aL. Zhang, L. Liardet, J. Luo, D. Ren, M. Gratzel, X. Hu, Nat. Catal. 2019, 2, 366–373;
- 2bY. C. Wu, R. J. Song, J. H. Li, Org. Chem. Front. 2020, 7, 1895–1902;
- 2cT. Gobbato, G. A. Volpato, A. Sartorel, M. Bonchio, Chem. Sci. 2023, 14, 12402–12429;
- 2dS. Y. Li, K. F. Huang, Z. Y. Tang, J. H. Wang, J. Mater. Chem. A 2023, 11, 3281–3296;
- 2eM. G. Sendeku, T. A. Shifa, F. T. Dajan, K. B. Ibrahim, B. Wu, Y. Yang, E. Moretti, A. Vomiero, F. Wang, Adv. Mater. 2024, 2308101.
- 3
- 3aH. Tateno, Y. Miseki, K. Sayama, Chem. Commun. 2017, 53, 4378–4381;
- 3bM. Gong, M. Huang, Y. Li, J. Zhang, J. K. Kim, J. S. Kim, Y. Wu, Green Chem. 2022, 24, 837–845;
- 3cM. Ko, Y. Kim, J. Woo, B. Lee, R. Mehrotra, P. Sharma, J. Kim, S. W. Hwang, H. Y. Jeong, H. Lim, S. H. Joo, J. W. Jang, J. H. Kwak, Nat. Catal. 2022, 5, 37–44;
- 3dY. Zhao, M. Duan, C. Deng, J. Yang, S. Yang, Y. Zhang, H. Sheng, Y. Li, C. Chen, J. Zhao, Nat. Commun. 2023, 14, 1943.
- 4
- 4aH. G. Cha, K. S. Choi, Nat. Chem. 2015, 7, 328–333;
- 4bC. A. Mesa, A. Kafizas, L. Francas, S. R. Pendlebury, E. Pastor, Y. Ma, F. Le Formal, M. T. Mayer, M. Gratzel, J. R. Durrant, J. Am. Chem. Soc. 2017, 139, 11537–11543;
- 4cD. Liu, J. C. Liu, W. Cai, J. Ma, H. B. Yang, H. Xiao, J. Li, Y. Xiong, Y. Huang, B. Liu, Nat. Commun. 2019, 10, 1779;
- 4dL. Luo, W. Chen, S. M. Xu, J. Yang, M. Li, H. Zhou, M. Xu, M. Shao, X. Kong, Z. Li, H. Duan, J. Am. Chem. Soc. 2022, 144, 7720–7730;
- 4eY. Xiao, M. Wang, D. Liu, J. Gao, J. Ding, H. Wang, H. B. Yang, F. Li, M. Chen, Y. Xu, D. Xu, Y. X. Zhang, S. Fang, X. Ao, J. Wang, C. Su, B. Liu, Angew. Chem. Int. Ed. 2024, 63, e202319685.
- 5
- 5aT. Li, T. Kasahara, J. He, K. E. Dettelbach, G. M. Sammis, C. P. Berlinguette, Nat. Commun. 2017, 8, 390;
- 5bH. Tateno, S. Iguchi, Y. Miseki, K. Sayama, Angew. Chem. Int. Ed. 2018, 57, 11238–11241;
- 5cJ. H. Wang, X. B. Li, J. Li, T. Lei, H. L. Wu, X. L. Nan, C. H. Tung, L. Z. Wu, Chem. Commun. 2019, 55, 10376–10379;
- 5dZ. Li, L. Luo, M. Li, W. Chen, Y. Liu, J. Yang, S. M. Xu, H. Zhou, L. Ma, M. Xu, X. Kong, H. Duan, Nat. Commun. 2021, 12, 6698;
- 5eX. D. Wang, Y. H. Huang, J. F. Liao, Z. F. Wei, W. G. Li, Y. F. Xu, H. Y. Chen, D. B. Kuang, Nat. Commun. 2021, 12, 1202;
- 5fJ. Zhang, Y. Zhu, C. Njel, Y. Liu, P. Dallabernardina, M. M. Stevens, P. H. Seeberger, O. Savateev, F. F. Loeffler, Nat. Commun. 2023, 14, 7104;
- 5gS. Y. Chae, A. Mehmood, E. D. Park, J. Am. Chem. Soc. 2024, 146, 4314–4319.
- 6
- 6aX. Liu, Z. Chen, S. Xu, G. Liu, Y. Zhu, X. Yu, L. Sun, F. Li, J. Am. Chem. Soc. 2022, 144, 19770–19777;
- 6bM. Tayebi, Z. Masoumi, A. Tayyebi, J. H. Kim, H. Lee, B. Seo, C. S. Lim, H. G. Kim, ACS Appl. Mater. Interfaces 2023, 15, 20053–20063;
- 6cD. Tang, L. Wu, L. Li, N. Fu, C. Chen, Y. Zhang, J. Zhao, Chem. Sci. 2024, 15, 3018–3027;
- 6dJ. Yang, Y. Zhao, M. Duan, C. Deng, Y. Zhang, Y. Lei, J. Li, W. Song, C. Chen, J. Zhao, Energy Environ. Sci. 2024, 17, 183–189.
- 7
- 7aY. J. C. T. Lei, H. L. Hu, H. L. Wu, S. Zhou, X. B. Li, B. Chen, C. H. Tung, L. Z. Wu, Matter 2021, 4, 2354–2366;
- 7bY. Zhao, C. Deng, D. Tang, L. Ding, Y. Zhang, H. Sheng, H. Ji, W. Song, W. Ma, C. Chen, J. Zhao, Nat. Catal. 2021, 4, 684–691;
- 7cW. A. Swansborough-Aston, A. Soltan, B. Coulson, A. Pratt, V. Chechik, R. E. Douthwaite, Green Chem. 2023, 25, 1067–1077;
- 7dL. Wu, Q. Li, K. Dang, D. Tang, C. Chen, Y. Zhang, J. Zhao, Angew. Chem. Int. Ed. 2023, e202316218.
- 8J. Wang, L. Zuo, Z. Guo, C. Yang, Y. Jiang, X. Huang, L. Wu, Z. Tang, Angew. Chem. Int. Ed. 2023, 62, e202315478.
- 9
- 9aT. Hisatomi, J. Kubota, K. Domen, Chem. Soc. Rev. 2014, 43, 7520–7535;
- 9bI. Roger, M. A. Shipman, M. D. Symes, Nat. Chem. Rev. 2017, 1, 0003;
- 9cS. Wang, G. Liu, L. Wang, Chem. Rev. 2019, 119, 5192–5247.
- 10
- 10aM. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, N. S. Lewis, Chem. Rev. 2010, 110, 6446–6473;
- 10bY. Ling, Z. Yuan, Y. Tian, X. Wang, J. C. Wang, Y. Xin, K. Hanson, B. Ma, H. Gao, Adv. Mater. 2016, 28, 305–311;
- 10cC. Jiang, S. J. A. Moniz, A. Wang, T. Zhang, J. Tang, Chem. Soc. Rev. 2017, 46, 4645–4660;
- 10dS. Wang, T. He, P. Chen, A. Du, K. Ostrikov, W. Huang, L. Wang, Adv. Mater. 2020, 32, 2001385;
- 10eY.-X. Ma, B. Gao, J. He, J.-F. Ma, Y. Zhao, Chem. Eng. J. 2021, 422, 130092;
- 10fB. He, Y. Cao, K. Lin, M. Wu, Y. Zhu, X. Cui, L. Hu, Y. Yang, X. Liu, eScience 2024, 100242;
- 10gB. He, Y. Cao, K. Lin, Y. Wang, Z. Li, Y. Yang, Y. Zhao, X. Liu, Angew. Chem. Int. Ed. 2024, 63, e202402435.
- 11
- 11aS. Hernández, G. Gerardi, K. Bejtka, A. Fina, N. Russo, Appl. Catal. B 2016, 190, 66–74;
- 11bB. He, S. Jia, M. Zhao, Y. Wang, T. Chen, S. Zhao, Z. Li, Z. Lin, Y. Zhao, X. Liu, Adv. Mater. 2021, 33, 2004406.
- 12
- 12aH. Cerecetto, A. Gerpe, M. Gonzalez, V. J. Aran, C. O. de Ocariz, Mini-Rev. Med. Chem. 2005, 5, 869–878;
- 12bC. Kibayashi, Chem. Pharm. Bull. 2005, 53, 1375–1386;
- 12cC. Sanchez, C. Mendez, J. A. Salas, Nat. Prod. Rep. 2006, 23, 1007–1045;
- 12dJ. Magano, M. Waldo, D. Greene, E. Nord, Org. Process Res. Dev. 2008, 12, 877–883.
- 13
- 13aY. W. Zheng, B. Chen, P. Ye, K. Feng, W. Wang, Q. Y. Meng, L. Z. Wu, C. H. Tung, J. Am. Chem. Soc. 2016, 138, 10080–10083;
- 13bL. Niu, H. Yi, S. Wang, T. Liu, J. Liu, A. Lei, Nat. Commun. 2017, 8, 14226;
- 13cB. Chen, L. Z. Wu, C. H. Tung, Acc. Chem. Res. 2018, 51, 2512–2523;
- 13dW. Liu, J. Li, P. Querard, C. J. Li, J. Am. Chem. Soc. 2019, 141, 6755–6764;
- 13eH. Long, C. Huang, Y. T. Zheng, Z. Y. Li, L. H. Jie, J. Song, S. Zhu, H. C. Xu, Nat. Commun. 2021, 12, 6629;
- 13fL. F. T. Novaes, J. S. K. Ho, K. Mao, K. Liu, M. Tanwar, M. Neurock, E. Villemure, J. A. Terrett, S. Lin, J. Am. Chem. Soc. 2022, 144, 1187–1197.
- 14
- 14aJ. F. Hartwig, Acc. Chem. Res. 2008, 41, 1534–1544;
- 14bC. S. Yeung, V. M. Dong, Chem. Rev. 2011, 111, 1215–1292;
- 14cC. Liu, J. Yuan, M. Gao, S. Tang, W. Li, R. Shi, A. Lei, Chem. Rev. 2015, 115, 12138–12204.
- 15Y. Fan, X. Ning, Q. Zhang, H. Zhao, J. Liu, P. Du, X. Lu, ChemSusChem 2021, 14, 1414–1422.
- 16
- 16aZhu, H. Yue, P. Nikolaienko, M. Rueping, CCS Chem. 2020, 2, 179–190;
- 16bZ. Li, W. Sun, X. Wang, L. Li, Y. Zhang, C. Li, J. Am. Chem. Soc. 2021, 143, 3536–3543;
- 16cY.-Z. Wang, Z.-H. Wang, I. L. Eshel, B. Sun, D. Liu, Y.-C. Gu, A. Milo, T.-S. Mei, Nat. Commun. 2023, 14, 2322.