A General Descriptor for Single-Atom Catalysts with Axial Ligands
This article relates to:
-
Back Cover: A General Descriptor for Single-Atom Catalysts with Axial Ligands (Angew. Chem. Int. Ed. 40/2024)
- Volume 63Issue 40Angewandte Chemie International Edition
- First Published online: August 1, 2024
Zelong Qiao
State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorRun Jiang
State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorProf. Haoxiang Xu
State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorCorresponding Author
Prof. Dapeng Cao
State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorCorresponding Author
Prof. Xiao Cheng Zeng
Department of Materials Science & Engineering, City University of Hong Kong, Kowloon, 99977 Hong Kong
Search for more papers by this authorZelong Qiao
State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorRun Jiang
State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorProf. Haoxiang Xu
State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorCorresponding Author
Prof. Dapeng Cao
State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorCorresponding Author
Prof. Xiao Cheng Zeng
Department of Materials Science & Engineering, City University of Hong Kong, Kowloon, 99977 Hong Kong
Search for more papers by this authorGraphical Abstract
A general descriptor σ was constructed to predict the oxygen reduction/evolution reaction activity of axial coordination ligand single-atom catalysts (ACL-SACs). We identify that ACLs can weaken the adsorption capability of the metal atom (M) by raising the bonding energy levels of the M−O bond while enhancing dispersity of the d orbital of M. Importantly, an axial ligand descriptor σACL was also identified that can serve as a potential descriptor to determine the rate-limiting steps of ACL-SACs in experiment.
Abstract
Decoration of an axial coordination ligand (ACL) on the active metal site is a highly effective and versatile strategy to tune activity of single-atom catalysts (SACs). However, the regulation mechanism of ACLs on SACs is still incompletely known. Herein, we investigate diversified combinations of ACL-SACs, including all 3d–5d transition metals and ten prototype ACLs. We identify that ACLs can weaken the adsorption capability of the metal atom (M) by raising the bonding energy levels of the M−O bond while enhancing dispersity of the d orbital of M. Through examination of various local configurations and intrinsic parameters of ACL-SACs, a general structure descriptor σ is constructed to quantify the structure–activity relationship of ACL-SACs which solely based on a few key intrinsic features. Importantly, we also identified the axial ligand descriptor σACL, as a part of σ, which can serve as a potential descriptor to determine the rate-limiting steps (RLS) of ACL-SACs in experiment. And we predicted several ACL-SACs, namely, CrN4-, FeN4-, CoN4-, RuN4-, RhN4-, OsN4-, IrN4- and PtN4-ACLs, that entail markedly higher activities than the benchmark catalysts of Pt and IrO2 for oxygen reduction reaction and oxygen evolution reaction, respectively, thereby supporting that the general descriptor σ can provide a simple and cost-effective method to assess efficient electrocatalysts.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202407812-sup-0001-misc_information.pdf5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1X. F. Yang, A. Wang, B. Qiao, J. Li, J. Liu, T. Zhang, Acc. Chem. Res. 2013, 46, 1740–1748.
- 2
- 2aZ. Y. Jin, P. P. Li, Y. Meng, Z. W. Fang, D. Xiao, G. H. Yu, Nat. Catal. 2021, 4, 615–622;
- 2bL. Yang, D. Cheng, H. Xu, X. Zeng, X. Wan, J. Shui, Z. Xiang, D. Cao, Proc. Natl. Acad. Sci. USA 2018, 115, 6626–6631;
- 2cL. Yang, L. Shi, D. Wang, Y. L. Lv, D. P. Cao, Nano Energy 2018, 50, 691–698.
- 3
- 3aJ. Li, Y. F. Jiang, Q. Wang, C. Q. Xu, D. Wu, M. N. Banis, K. R. Adair, K. Doyle-Davis, D. M. Meira, Y. Z. Finfrock, W. Li, L. Zhang, T. K. Sham, R. Li, N. Chen, M. Gu, J. Li, X. Sun, Nat. Commun. 2021, 12, 6806;
- 3bH. Liu, J. Gao, X. Xu, Q. Jia, L. Yang, S. Wang, D. Cao, Chem. Eng. J. 2022, 448, 137706.
- 4
- 4aZ. Q. Niu, Z. Lu, Z. L. Qiao, S. Wang, X. Cao, X. Chen, J. Yun, L. Zheng, D. P. Cao, Adv. Mater. 2024, 36, 2310690;
- 4bJ. M. Zhang, X. P. Xu, L. Yang, D. J. Cheng, D. P. Cao, Small Methods 2019, 3, 1900653;
- 4cX. Ding, R. Jiang, J. Wu, M. Xing, Z. Qiao, X. Zeng, S. Wang, D. Cao, Adv. Funct. Mater. 2023, 33, 2306786.
- 5N. Mohd Adli, W. Shan, S. Hwang, W. Samarakoon, S. Karakalos, Y. Li, D. A. Cullen, D. Su, Z. Feng, G. Wang, G. Wu, Angew. Chem. Int. Ed. 2021, 60, 1022–1032.
- 6Y. Gu, B. Xi, W. Tian, H. Zhang, Q. Fu, S. Xiong, Adv. Mater. 2021, 33, 2100429.
- 7
- 7aH. B. Yin, P. F. Yuan, B. A. Lu, H. C. Xia, K. Guo, G. G. Yang, G. Qu, D. P. Xue, Y. F. Hu, J. Q. Cheng, S. C. Mu, J. N. Zhang, ACS Catal. 2021, 11, 12754–12762;
- 7bZ. Chen, H. Niu, J. Ding, H. Liu, P. H. Chen, Y. H. Lu, Y. R. Lu, W. Zuo, L. Han, Y. Guo, S. F. Hung, Y. Zhai, Angew. Chem. Int. Ed. 2021, 60, 25404–25410;
- 7cJ. J. Ma, J. S. Li, R. G. Wang, Y. Y. Yang, P. F. Yin, J. Mao, T. Ling, S. Z. Qiao, Mater. Today Energy 2021, 19, 100624;
- 7dW. Cheng, P. Yuan, Z. Lv, Y. Guo, Y. Qiao, X. Xue, X. Liu, W. Bai, K. Wang, Q. Xu, J. Zhang, Appl. Catal. B 2020, 260, 118198;
- 7eX. J. Cui, H. B. Li, Y. Wang, Y. L. Hu, L. Hua, H. Y. Li, X. W. Han, Q. F. Liu, F. Yang, L. M. He, X. Q. Chen, Q. Y. Li, J. P. Xiao, D. H. Deng, X. H. Bao, Chem 2018, 4, 1902–1910;
- 7fK. Qian, H. Chen, W. Li, Z. Ao, Y. N. Wu, X. Guan, Environ. Sci. Technol. 2021, 55, 7034–7043.
- 8
- 8aJ. Y. Wang, W. B. Qiu, G. R. Li, J. B. Liu, D. Luo, Y. G. Zhang, Y. Zhao, G. F. Zhou, L. L. Shui, X. Wang, Z. W. Chen, Energy Storage Mater. 2022, 46, 269–277;
- 8bP. P. Su, W. J. Huang, J. W. Zhang, U. Guharoy, Q. G. Du, Q. Sun, Q. K. Jiang, Y. Cheng, J. Yang, X. L. Zhang, Y. S. Liu, S. P. Jiang, J. Liu, Nano Res. 2021, 14, 1069–1077;
- 8cX. Wang, Y. Jia, X. Mao, D. Liu, W. He, J. Li, J. Liu, X. Yan, J. Chen, L. Song, A. Du, X. Yao, Adv. Mater. 2020, 32, 2000966;
- 8dK. Jiang, X.-Y. Ma, S. Back, J. Zhao, F. Jiang, X. Qin, J. Zhang, W.-B. Cai, CCS Chem. 2021, 3, 241–251.
- 9
- 9aZ. Y. Xiao, P. P. Sun, Z. L. Qiao, K. W. Qiao, H. X. Xu, S. T. Wang, D. P. Cao, Chem. Eng. J. 2022, 446, 137112;
- 9bS. Huang, Z. Qiao, P. Sun, K. Qiao, K. Pei, L. Yang, H. Xu, S. Wang, Y. Huang, Y. Yan, D. Cao, Appl. Catal. B 2022, 317, 121770;
- 9cJ. Chen, H. Li, C. Fan, Q. Meng, Y. Tang, X. Qiu, G. Fu, T. Ma, Adv. Mater. 2020, 32, 2003134.
- 10
- 10aK. M. Zhao, S. Q. Liu, Y. Y. Li, X. L. Wei, G. Y. Ye, W. W. Zhu, Y. K. Su, J. Wang, H. T. Liu, Z. He, Z. Y. Zhou, S. G. Sun, Adv. Energy Mater. 2022, 12, 2103588;
- 10bB. Ji, J. Gou, Y. Zheng, X. Zhou, P. Kidkhunthod, Y. Wang, Q. Tang, Y. Tang, Adv. Mater. 2022, 34, 2202714;
- 10cA. Alsudairi, J. Li, N. Ramaswamy, S. Mukerjee, K. M. Abraham, Q. Jia, J. Phys. Chem. Lett. 2017, 8, 2881–2886;
- 10dI. Liberman, R. Shimoni, R. Ifraemov, I. Rozenberg, C. Singh, I. Hod, J. Am. Chem. Soc. 2020, 142, 1933–1940;
- 10eR. Venegas, F. J. Recio, J. Riquelme, K. Neira, J. F. Marco, I. Ponce, J. H. Zagal, F. Tasca, J. Mater. Chem. A 2017, 5, 12054–12059.
- 11P. J. Wei, G. Q. Yu, Y. Naruta, J. G. Liu, Angew. Chem. Int. Ed. 2014, 53, 6659–6663.
- 12L. Peng, J. Yang, Y. Yang, F. Qian, Q. Wang, D. Sun-Waterhouse, L. Shang, T. Zhang, G. I. N. Waterhouse, Adv. Mater. 2022, 34, 2202544.
- 13Z. Li, R. Wu, S. Xiao, Y. Yang, L. Lai, J. S. Chen, Y. Chen, Chem. Eng. J. 2022, 430, 132882.
- 14X. Yang, D. Xia, Y. Kang, H. Du, F. Kang, L. Gan, J. Li, Adv. Sci. 2020, 7, 2000176.
- 15C. Chen, Z. Chen, J. Zhong, X. Song, D. Chen, S. Liu, W.-C. Cheong, J. Li, X. Tan, C. He, J. Zhang, D. Liu, Q. Yuan, C. Chen, Q. Peng, Y. Li, Nano Res. 2023, 16, 4211–4218.
- 16J. K. Norskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, H. Jonsson, J. Phys. Chem. B 2004, 108, 17886–17892.
- 17S. Zhang, H. Xue, W. L. Li, J. Sun, N. Guo, T. Song, H. Dong, J. Zhang, X. Ge, W. Zhang, Q. Wang, Small 2021, 17, 2102125.
- 18
- 18aT. Sours, A. Patel, J. Norskov, S. Siahrostami, A. Kulkarni, J. Phys. Chem. Lett. 2020, 11, 10029–10036;
- 18bV. Viswanathan, H. A. Hansen, J. Rossmeisl, J. K. Norskov, ACS Catal. 2012, 2, 1654–1660.
- 19A. Kulkarni, S. Siahrostami, A. Patel, J. K. Nørskov, Chem. Rev. 2018, 118, 2302–2312.
- 20
- 20aM. J. Choi, L. Wang, K. A. Stoerzinger, S. Y. Chung, S. A. Chambers, Y. G. Du, Adv. Energy Mater. 2023, 13, 2300239;
- 20bH. Xu, D. Cheng, D. Cao, X. C. Zeng, Nat. Catal. 2024, 7, 207–218;
- 20cD. Li, H. Xu, J. Zhu, D. Cao, J. Mater. Chem. A 2022, 10, 1451–1462.
- 21
- 21aY. J. Deng, V. Tripkovic, J. Rossmeisl, M. Arenz, ACS Catal. 2016, 6, 671–676;
- 21bY. H. Wang, J. B. Le, W. Q. Li, J. Wei, P. M. Radjenovic, H. Zhang, X. S. Zhou, J. Cheng, Z. Q. Tian, J. F. Li, Angew. Chem. Int. Ed. 2019, 58, 16062–16066;
- 21cH. C. Tsai, Y. C. Hsieh, T. H. Yu, Y. J. Lee, Y. H. Wu, B. V. Merinov, P. W. Wu, S. Y. Chen, R. R. Adzic, W. A. Goddard, ACS Catal. 2015, 5, 1568–1580;
- 21dG. Nam, Y. Son, S. O. Park, W. C. Jeon, H. Jang, J. Park, S. Chae, Y. Yoo, J. Ryu, M. G. Kim, S. K. Kwak, J. Cho, Adv. Mater. 2018, 30, 1803372;
- 21eZ. Q. Niu, H. B. Liu, Z. L. Qiao, K. W. Qiao, P. P. Sun, H. X. Xu, S. T. Wang, D. P. Cao, Mater. Today Energy 2022, 27, 101043.
- 22
- 22aH. Xu, D. Cheng, D. Cao, X. C. Zeng, Nat. Catal. 2018, 1, 339–348;
- 22bS. Wang, H. Lv, S. H. Bi, T. Q. Li, Y. W. Sun, W. X. Ji, C. Feng, C. M. Zhang, Mater. Chem. Front. 2021, 5, 8047–8055;
- 22cL. E. Camacho-Forero, F. Godinez-Salomon, G. Ramos-Sanchez, C. P. Rhodes, P. B. Balbuena, J. Catal. 2022, 408, 64–80.
- 23
- 23aP. Hutchison, P. S. Rice, R. E. Warburton, S. Raugei, S. Hammes-Schiffer, J. Am. Chem. Soc. 2022, 144, 16524–16534;
- 23bC. Zúñiga, C. Candia-Onfray, R. Venegas, K. Muñoz, J. Urra, M. Sánchez-Arenillas, J. F. Marco, J. H. Zagal, F. J. Recio, Electrochem. Commun. 2019, 102, 78–82;
- 23cJ. H. Zagal, M. T. M. Koper, Angew. Chem. Int. Ed. 2024, 55, 14510–14521;
- 23dQ. Jia, N. Ramaswamy, H. Hafiz, U. Tylus, K. Strickland, G. Wu, B. Barbiellini, A. Bansil, E. F. Holby, P. Zelenay, S. Mukerjee, ACS Nano 2015, 9, 12496–12505;
- 23eN. Ramaswamy, U. Tylus, Q. Jia, S. Mukerjee, J. Am. Chem. Soc. 2013, 135, 15443–15449.
- 24V. L. Deringer, A. L. Tchougreeff, R. Dronskowski, J. Phys. Chem. A 2011, 115, 5461–5466.
- 25Z. Y. Duan, G. Henkelman, ACS Catal. 2020, 10, 12148–12155.
- 26P. Sun, Z. Qiao, S. Wang, D. Li, X. Liu, Q. Zhang, L. Zheng, Z. Zhuang, D. Cao, Angew. Chem. Int. Ed. 2023, 62, 202216041.