Loading Dyes into Chiral Cd/Zn-Metal–Organic Frameworks for Efficient Full-Color Circularly Polarized Luminescence
Dr. Hua-Qing Yin
Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, 391 West Binshui Road, Tianjin, 300384 China
Search for more papers by this authorJia Chen
Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, 391 West Binshui Road, Tianjin, 300384 China
Search for more papers by this authorYu-Wei Xue
Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, 391 West Binshui Road, Tianjin, 300384 China
Search for more papers by this authorJing Ren
Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, 391 West Binshui Road, Tianjin, 300384 China
Search for more papers by this authorXin-Hui Wang
Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, 391 West Binshui Road, Tianjin, 300384 China
Search for more papers by this authorHeng-Rui Fan
Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, 391 West Binshui Road, Tianjin, 300384 China
Search for more papers by this authorShu-Yan Wei
Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, 391 West Binshui Road, Tianjin, 300384 China
Search for more papers by this authorBo Sun
Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, 391 West Binshui Road, Tianjin, 300384 China
Search for more papers by this authorCorresponding Author
Prof. Zhi-Ming Zhang
Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, 391 West Binshui Road, Tianjin, 300384 China
Search for more papers by this authorDr. Hua-Qing Yin
Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, 391 West Binshui Road, Tianjin, 300384 China
Search for more papers by this authorJia Chen
Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, 391 West Binshui Road, Tianjin, 300384 China
Search for more papers by this authorYu-Wei Xue
Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, 391 West Binshui Road, Tianjin, 300384 China
Search for more papers by this authorJing Ren
Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, 391 West Binshui Road, Tianjin, 300384 China
Search for more papers by this authorXin-Hui Wang
Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, 391 West Binshui Road, Tianjin, 300384 China
Search for more papers by this authorHeng-Rui Fan
Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, 391 West Binshui Road, Tianjin, 300384 China
Search for more papers by this authorShu-Yan Wei
Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, 391 West Binshui Road, Tianjin, 300384 China
Search for more papers by this authorBo Sun
Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, 391 West Binshui Road, Tianjin, 300384 China
Search for more papers by this authorCorresponding Author
Prof. Zhi-Ming Zhang
Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, Tianjin University of Technology, 391 West Binshui Road, Tianjin, 300384 China
Search for more papers by this authorGraphical Abstract
The sizes of chiral MOFs can be controlled from sub-20 μm to over 7 mm by tuning the types and additional amounts of organic dyes. The full-color circularly polarized luminescence MOFs are synthesized by different dyes encapsulation, which are further assembled into a white CPL light-emitting diode.
Abstract
Host-guest chemistry of chiral metal-organic frameworks (MOFs) has endowed them with circularly polarized luminescence (CPL), it is still limited for MOFs to systematically tune full-color CPL emissions and sizes. This work directionally assembles the chiral ligands, metal sites and organic dyes to prepare a series of crystalline enantiomeric D/L-Cd/Zn-n MOFs (n=1~5, representing the adding amount of dyes), where D/L-Cd/Zn with the formula of Cd2(D/L–Cam)2(TPyPE) and Zn2(D/L–Cam)2(TPyPE) (D/L-Cam=D/L-camphoric acid, TPyPE=4,4’,4’’,4’’’-(1,2-henediidenetetra-4,1-phenylene)tetrakis[pyridine]) were used as the chiral platforms. The framework-dye-enabled emission and through-space chirality transfer facilitate D/L-Cd/Zn-n bright full-color CPL activity. The ideal yellow CPL of D-Cd-5 and D-Zn-4, with |glum| as 4.9 × 10−3 and 1.3×10−3 and relatively high photoluminescence quantum yield of 40.79 % and 45.40 %, are further assembled into a white CPL light-emitting diode. The crystal sizes of D/L-Cd/Zn-n were found to be strongly correlated to the types and additional amounts of organic dyes, that the positive organic dyes allow for the preparation of > 7 mm bulks and negative dyes account for sub-20 μm particles. This work opens a new avenue to fabricate full-color emissive CPL composites and provides a potentially universal method for controlling the size of optical platforms.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202407596-sup-0001-misc_information.pdf3.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aX. Zhan, F. F. Xu, Z. Zhou, Y. Yan, J. Yao, Y. S. Zhao, Adv. Mater. 2021, 33, 2104418;
- 1bY. Sang, J. Han, T. Zhao, P. Duan, M. Liu, Adv. Mater. 2020, 32, 1900110;
- 1cJ. Y. Wang, Y. Si, X. M. Luo, Z. Y. Wang, X. Y. Dong, P. Luo, C. Zhang, C. Duan, S. Q. Zang, Adv. Sci. 2023, 10, 2207660.
- 2
- 2aH. Zhu, Q. Wang, K. Sun, W. Chen, J. Tang, J. Hao, Z. Wang, J. Sun, W. C. H. Choy, P. Muller-Buschbaum, X. W. Sun, D. Wu, K. Wang, ACS Appl. Mater. Interfaces 2023, 15, 9978–9986;
- 2bY. Dong, Y. Zhang, X. Li, Y. Feng, H. Zhang, J. Xu, Small 2019, 15, 1902237;
- 2cC. Xue, Y. Jiang, H. X. Wang, C. Du, L. Xu, T. Li, M. Liu, Angew. Chem. Int. Ed. 2022, 61, e202205633.
- 3
- 3aS. Lin, S. Zeng, Z. Li, Q. Fan, J. Guo, ACS Appl. Mater. Interfaces 2022, 14, 30362–30370;
- 3bZ. Zheng, H. Hu, Z. Zhang, B. Liu, M. Li, D. Qu, H. Tian, W.-H. Zhu, B. L. Feringa, Nat. Photon. 2022, 16, 226–234;
- 3cQ. Guo, M. Zhang, Z. Tong, S. Zhao, Y. Zhou, Y. Wang, S. Jin, J. Zhang, H. B. Yao, M. Zhu, T. Zhuang, J. Am. Chem. Soc. 2023, 145, 4246–4253;
- 3dD. F. De Rosa, P. Stachelek, D. J. Black, R. Pal, Nat. Commun. 2023, 14, 1537.
- 4
- 4aX. L. Yang, Z. Y. Yang, R. Shao, R. F. Guan, S. L. Dong, M. H. Xie, Adv. Mater. 2023, 35, 2304046;
- 4bY. Imai, Y. Nakano, T. Kawai, J. Yuasa, Angew. Chem. Int. Ed. 2018, 57, 8973–8978;
- 4cQ. Gu, J. Zha, C. Chen, X. Wang, W. Yao, J. Liu, F. Kang, J. Yang, Y. Y. Li, D. Lei, Z. Tang, Y. Han, C. Tan, Q. Zhang, Adv. Mater. 2023, 2306414.
- 5
- 5aY. Xu, Z. Ni, Y. Xiao, Z. Chen, S. Wang, L. Gai, Y. X. Zheng, Z. Shen, H. Lu, Z. Guo, Angew. Chem. Int. Ed. 2023, 62, e202218023;
- 5bJ. H. Chen, Z. Y. Jiang, H. Xiao, S. Tong, T. H. Shi, J. Zhu, M. X. Wang, Angew. Chem. Int. Ed. 2023, 62, e202301782;
- 5cK. Takaishi, S. Hinoide, T. Matsumoto, T. Ema, J. Am. Chem. Soc. 2019, 141, 11852–11857;
- 5dJ. K. Li, X. Y. Chen, Y. L. Guo, X. C. Wang, A. C. Sue, X. Y. Cao, X. Y. Wang, J. Am. Chem. Soc. 2021, 143, 17958–17963;
- 5eJ. K. Li, X. Y. Chen, W. L. Zhao, Y. L. Guo, Y. Zhang, X. C. Wang, A. C. Sue, X. Y. Cao, M. Li, C. F. Chen, X. Y. Wang, Angew. Chem. Int. Ed. 2023, 62, e202215367.
- 6
- 6aX. Lin, G. Ouyang, M. Liu, ACS Appl. Mater. Interfaces 2023, 15, 19741–19749;
- 6bO. G. Willis, F. Petri, D. F. De Rosa, A. Mandoli, R. Pal, F. Zinna, L. Di Bari, J. Am. Chem. Soc. 2023, 145, 25170–25176;
- 6cD. F. Caffrey, T. Gorai, B. Rawson, M. Martinez-Calvo, J. A. Kitchen, N. S. Murray, O. Kotova, S. Comby, R. D. Peacock, P. Stachelek, R. Pal, T. Gunnlaugsson, Adv. Sci. 2024, 2307448;
- 6dD. Zhai, J. Jiang, C. Yuan, D. Wang, Y. Jiang, M. Liu, Adv. Optical Mater. 2023, 11, 2300161;
- 6eY. Wang, D. Niu, G. Ouyang, M. Liu, Nat. Commun. 2022, 13, 1710.
- 7
- 7aW. Shang, Y. Wang, X. Zhu, T. Liang, C. Du, J. Xiang, M. Liu, J. Am. Chem. Soc. 2023, 145, 27639–27649;
- 7bP. Luo, X. J. Zhai, S. Bai, Y. B. Si, X. Y. Dong, Y. F. Han, S. Q. Zang, Angew. Chem. Int. Ed. 2023, 62, e202219017.
- 8X. Z. Wang, C. W. Zhou, J. Zheng, Z. X. Lian, M. Y. Sun, Y. L. Huang, D. Luo, Y. Y. Li, X. P. Zhou, Adv. Sci. 2023, 10, 2207333.
- 9
- 9aC. Zhang, Z. S. Li, X. Y. Dong, Y. Y. Niu, S. Q. Zang, Adv. Mater. 2022, 34, 2109496;
- 9bC. Zhang, Z. P. Yan, X. Y. Dong, Z. Han, S. Li, T. Fu, Y. Y. Zhu, Y. X. Zheng, Y. Y. Niu, S. Q. Zang, Adv. Mater. 2020, 32, 2002914.
- 10
- 10aL. Hu, K. Li, W. Shang, X. Zhu, M. Liu, Angew. Chem. Int. Ed. 2020, 59, 4953–4958;
- 10bX. Y. Liu, K. Xing, Y. Li, C. K. Tsung, J. Li, J. Am. Chem. Soc. 2019, 141, 14807–14813.
- 11
- 11aH. Q. Yin, X. Y. Wang, X. B. Yin, J. Am. Chem. Soc. 2019, 141, 15166–15173;
- 11bJ. I. Deneff, L. E. S. Rohwer, K. S. Butler, B. Kaehr, D. J. Vogel, T. S. Luk, R. A. Reyes, A. A. Cruz-Cabrera, J. E. Martin, D. F. Sava Gallis, Nat. Commun. 2023, 14, 981;
- 11cJ. Li, S. Yuan, J. S. Qin, L. Huang, R. Bose, J. Pang, P. Zhang, Z. Xiao, K. Tan, A. V. Malko, T. Cagin, H. C. Zhou, ACS Appl. Mater. Interfaces 2020, 12, 26727–26732;
- 11dJ. Dong, L. Liu, C. Tan, Q. Xu, J. Zhang, Z. Qiao, D. Chu, Y. Liu, Q. Zhang, J. Jiang, Y. Han, A. P. Davis, Y. Cui, Nature 2022, 602, 606–611.
- 12
- 12aH. R. Fu, N. Wang, X. X. Wu, F. F. Li, Y. Zhao, L. F. Ma, M. Du, Adv. Optical Mater. 2020, 8, 2000330;
- 12bC. Zhang, S. Guan, H. Y. Li, X. Y. Dong, S. Q. Zang, Nano Lett. 2024, 24, 2048–2056;
- 12cY. H. Xiao, Z. Z. Ma, X. X. Yang, D. S. Li, Z. G. Gu, J. Zhang, ACS Nano 2023, 17, 19136–19143.
- 13
- 13aP. F. Gao, Y. Y. Jiang, H. Liu, M. S. Zhou, T. Li, H. R. Fu, L. F. Ma, D. S. Li, ACS Appl. Mater. Interfaces 2022, 14, 16435–16444;
- 13bR. Zhai, Y. H. Xiao, Z. G. Gu, J. Zhang, Nano Res 2022, 15, 1102–1108.
- 14P. Gao, K. Zhang, D. Ren, H. Liu, H. Zhang, H. Fu, L. Ma, D. Li, Adv. Funct. Mater. 2023, 33, 2300105.
- 15Z. Han, K. Wang, Y. Guo, W. Chen, J. Zhang, X. Zhang, G. Siligardi, S. Yang, Z. Zhou, P. Sun, W. Shi, P. Cheng, Nat. Commun. 2019, 10, 5117.
- 16S. Li, Y. Zhou, B. Yan, Inorg. Chem. 2022, 61, 9615–9622.
- 17
- 17aX. G. Wang, Q. Cheng, Y. Yu, X. Z. Zhang, Angew. Chem. Int. Ed. 2018, 57, 7836–7840;
- 17bL. Meng, B. Yu, Y. Qin, Commun. Chem. 2021, 4, 82.
- 18
- 18aN. S. Pappas, J. A. Mason, Chem. Sci. 2023, 14, 4647–4652;
- 18bX. L. Lv, L. Feng, K. Y. Wang, L. H. Xie, T. He, W. Wu, J. R. Li, H. C. Zhou, Angew. Chem. Int. Ed. 2021, 60, 2053–2057;
- 18cH. L. Xia, J. Zhang, J. Si, H. Wang, K. Zhou, L. Wang, J. Li, W. Sun, L. Qu, J. Li, X. Y. Liu, Angew. Chem. Int. Ed. 2023, 62, e202308506.
- 19
- 19aC. Chen, A. Ozcan, A. O. Yazaydin, B. P. Ladewig, J. Membr. Sci. 2019, 575, 209–216;
- 19bD. G. Ha, M. Rezaee, Y. Han, S. A. Siddiqui, R. W. Day, L. S. Xie, B. J. Modtland, D. A. Muller, J. Kong, P. Kim, M. Dinca, M. A. Baldo, ACS Cent. Sci. 2021, 7, 104–109.
- 20L. Chen, J. Lu, X. Li, N. Luan, Y. Song, S. Yang, M. Yuan, H. Qin, H. Zhu, X. Dong, K. Li, D. Zhang, L. Chen, X. Dai, Y. Wang, Y. Wang, C. Xu, Z. Chai, S. Wang, J. Am. Chem. Soc. 2024, 146, 6697–6705.
- 21W. Shang, X. Zhu, T. Liang, C. Du, L. Hu, T. Li, M. Liu, Angew. Chem. Int. Ed. 2020, 59, 12811–12816.
- 22W. Morris, S. Wang, D. Cho, E. Auyeung, P. Li, O. K. Farha, C. A. Mirkin, ACS Appl. Mater. Interfaces 2017, 9, 33413–33418.
- 23
- 23aM. C. Wasson, K.-i. Otake, X. Gong, A. R. Strathman, T. Islamoglu, N. C. Gianneschi, O. K. Farha, CrystEngComm 2020, 22, 8182–8188;
- 23bC. R. Marshall, S. A. Staudhammer, C. K. Brozek, Chem. Sci. 2019, 10, 9396–9408.
- 24Deposition numbers 2349054 (for D−Zn) and 2349051 (for L−Zn) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.