Triply Interlocked [2]catenanes: Rational Synthesis, Reversible Conversion Studies and Unprecedented Application in Photothermal Responsive Elastomer
Corresponding Author
Li-Long Dang
College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorJie Zheng
College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934 P. R. China
College of materials and Chemical Engineering, China Three Gorges University, Yichang, 443002 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorJu-Zhong Zhang
School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorTian Chen
College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934 P. R. China
Search for more papers by this authorYin-Hang Chai
College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934 P. R. China
Search for more papers by this authorHong-Ru Fu
College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934 P. R. China
Search for more papers by this authorFrancisco Aznarez
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200438 P. R. China
Search for more papers by this authorCorresponding Author
Shui-Ren Liu
School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001 P. R. China
Search for more papers by this authorProf. Dong-Sheng Li
College of materials and Chemical Engineering, China Three Gorges University, Yichang, 443002 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Lu-Fang Ma
College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934 P. R. China
Search for more papers by this authorCorresponding Author
Li-Long Dang
College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorJie Zheng
College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934 P. R. China
College of materials and Chemical Engineering, China Three Gorges University, Yichang, 443002 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorJu-Zhong Zhang
School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorTian Chen
College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934 P. R. China
Search for more papers by this authorYin-Hang Chai
College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934 P. R. China
Search for more papers by this authorHong-Ru Fu
College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934 P. R. China
Search for more papers by this authorFrancisco Aznarez
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai, 200438 P. R. China
Search for more papers by this authorCorresponding Author
Shui-Ren Liu
School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001 P. R. China
Search for more papers by this authorProf. Dong-Sheng Li
College of materials and Chemical Engineering, China Three Gorges University, Yichang, 443002 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Lu-Fang Ma
College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang, 471934 P. R. China
Search for more papers by this authorGraphical Abstract
Abstract
Triply interlocked [2]catenane complexes featuring two identical, mechanically interlocked units are extraordinarily rare chemical compounds, whose properties and applications remain open to detailed studies. Herein, we introduce the rational design of a new ligand precursor, L1, suitable for the synthesis of six triply interlocked [2]catenanes by coordination-driven self-assembly. The interlocked compounds can be reversibly converted into the corresponding simple triangular prism metallacage by addition of H2O or DMF solvents to their CH3OH solutions, thereby demonstrating the importance of π⋅⋅⋅π stacking and hydrogen bonding interactions in the formation of triply interlocked [2]catenanes. Moreover, extensive studies have been conducted to assess the remarkable photothermal conversion performance. Complex 6 a, exhibiting outstanding photothermal conversion performance (conversion efficiency in solution : 31.82 %), is used to prepare novel photoresponsive elastomer in combination with thermally activated liquid crystal elastomer. The resultant material displays robust response to near-infrared (NIR) laser and the capability of completely reforming the shape and reversible actuation, paving the way for the application of half-sandwich organometallic units in photo-responsive smart materials.
Conflict of interests
The authors declare no competing financial interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202406552-sup-0001-misc_information.pdf6.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aA. Coskun, J.-M. Spruell, G. Barin, W.-R. Dichtel, A.-H. Flood, Y.-Y. Botros, J.-F. Stoddart, Chem. Soc. Rev. 2012, 41, 4827–4859;
- 1bC.-J. Bruns, J.-F. Stoddart, Angew. Chem. Int. Ed. 2016, 56, 39–39;
- 1cA.-W. Heard, S.-M. Goldup, Chem. 2020, 6, 994–1006.
- 2R.-S. Forgan, J.-P. Sauvage, J.-F. Stoddart, Chem. Rev. 2011, 111, 5434–5464.
- 3M. Xue, Y. Yang, X. Chi, X. Yan, F. Huang, Chem. Rev. 2015, 115, 7398–7501.
- 4
- 4aJ.-J. Danon, A. Kruger, D.-A. Leigh, J.-F. Lemonnier, A.-J. Stephens, I.-J. Vitorica-Yrezabal, S.-L. Woltering, Science 2017, 355, 159–162;
- 4bT.-K. Ronson, Y.-J. Wang, K. Baldridge, J.-S. Siegel, J.-R. Nitschke, J. Am. Chem. Soc. 2020, 142, 10267–10272.
- 5
- 5aJ.-C. Loren, M. Yoshizawa, R.-F. Haldimann, A. Linden, J.-S. Siegel, Angew. Chem. Int. Ed. 2003, 42, 5702–5705;
- 5bK.-S. Chichak, S.-J. Cantrill, A.-R. Pease, S.-H. Chiu, G.-W.-V. Cave, J.-L. Atwood, J.-F. Stoddart, Science 2004, 304, 1308–1312;
- 5cY.-H. Song, N. Singh, J. Jung, H. Kim, E.-H. Kim, H.-K. Cheong, Y. Kim, K.-W. Chi, Angew. Chem. Int. Ed. 2016, 55, 2007–2011;
- 5dL. Zhang, L. Lin, D. Liu, Y.-J. Lin, Z.-H. Li, G.-X. Jin, J. Am. Chem. Soc. 2017, 139, 1653–1660;
- 5eY. Lu, H.-N. Zhang, G.-X. Jin, Acc. Chem. Res. 2018, 51, 2148–2158;
- 5fW.-X. Gao, H.-J. Feng, Y.-J. Lin, G.-X. Jin, J. Am. Chem. Soc. 2019, 141, 9160–9164;
- 5gY. Lu, D. Liu, Z. Cui, Y.-J. Lin, G.-X. Jin, Chin. J. Chem. 2021, 39, 360–366.
- 6
- 6aH.-N. Hang, W.-X. Gao, Y.-J. Lin, G.-X. Jin, J. Am. Chem. Soc. 2019, 141, 16057–16063;
- 6bZ. Cui, Y. Lu, X. Gao, H.-J. Feng, G.-X. Jin, J. Am. Chem. Soc. 2020, 142, 13667–13671;
- 6cW.-L. Shan, X. Gao, Y.-J. Lin, G.-X. Jin, Chem. Eur. J. 2020, 26, 5093–5099.
- 7
- 7aG. Gil-Ramírez, D.-A. Leigh, A.-J. Stephens, Angew. Chem. Int. Ed. 2015, 54, 6110–6150;
- 7bM. Frank, M.-D. Johnstone, G.-H. Clever, Chem. Eur. J. 2016, 22, 14104–14125;
- 7cR. Zhu, J. Ding, L. Jin, H. Pang, Chem. Rev. 2019, 389, 119–140;
- 7dT.-K. Ronson, Y.-J. Wang, K. Baldridge, J.-R. Nitschke, J. Am. Chem. Soc. 2020, 142, 10267–10272;
- 7eB. Lan, R.-Y. Zhang, J.-F. Yan, Y.-F. Yuan, Y.-M. Li, Chin. J. Struct. Chem. 2023, 42, 100008.
- 8Y. Tamura, H. Takezawa, M. Fujita, J. Am. Chem. Soc. 2020, 142, 5504–5508.
- 9M. Fujita, N. Fujita, K. Ogura, K. Yamaguchi, Nature 1999, 400, 52–55.
- 10A. Westcott, J. Fisher, L.-P. Harding, P. Rizkallah, M.-J. Hardie, J. Am. Chem. Soc. 2008, 130, 2950–2951.
- 11
- 11aL. Yang, X. Jing, B. An, C. He, Y. Yang, C. Duan, Chem. Sci. 2018, 9, 1050–1057;
- 11bL.-X. Cai, D.-N. Yan, P.-M. Cheng, J.-J. Xuan, S.-C. Li, L.-P. Zhou, C.-B. Tian, Q.-F. Sun, J. Am. Chem. Soc. 2021, 143, 2016–2024;
- 11cH.-M. Yu, M.-H. Du, J. Shu, Y.-H. Deng, Z.-M. Xu, Z.-W. Huang, Z. Zhang, B. Chen, P. Braunstein, J.-P. Lang, J. Am. Chem. Soc. 2023, 145, 25103–25108.
- 12Y.-W. Zhang, S. Bai, Y.-Y. Wang, Y.-F. Han, J. Am. Chem. Soc. 2020, 142, 13614–13621.
- 13W.-X. Gao, H.-J. Feng, B.-B. Guo, Y. Lu, G.-X. Jin, Chem. Rev. 2020, 120, 6288–6325.
- 14
- 14aT. Chen, Y. Zhao, L.-L. Dang, T. Zhang, X.-L. Lu, Y.-H. Chai, F. Aznarez, L.-F. Ma, J. Am. Chem. Soc. 2023, 145, 18036–18047;
- 14bW.-L. Shan, H.-H. Hou, N. Si, C.-X. Wang, G.-Z. Yuan, X. Gao, G.-X. Jin, Angew. Chem. Int. Ed. 2024, 63, DOI: 10.1002/anie.202402198.
- 15
- 15aH.-N. Zhang, W.-X. Gao, Y.-J. Lin, G.-X. Jin, J. Am. Chem. Soc. 2019, 141, 16057–16063;
- 15bL.-L. Dang, X. Gao, Y.-J. Lin, G.-X. Jin, Chem. Sci. 2020, 11, 1226–1232;
- 15cL.-L. Dang, H.-J. Feng, Y.-J. Lin, G.-X. Jin, J. Am. Chem. Soc. 2020, 142, 18946–18954.
- 16
- 16aT. Castle, M.-E. Evans, S.-T. Hyde, New J. Chem. 2008, 32, 1484–1492;
- 16bF. Li, J.-K. Clegg, L.-F. Lindoy, R.-B. Macquart, G.-V. Meehan, Nat. Commun. 2011, 2, 205;
- 16cY. Domoto, M. Abe, K. Yamamoto, T. Kikuchi, M. Fujita, Chem. Sci. 2020, 11, 10457–10460;
- 16dY. Domoto, M. Abe, T. Kikuchi, M. Fujita, Angew. Chem. Int. Ed. 2020, 59, 3450–3454;
- 16eY. Domoto, M. Abe, M. Fujita, J. Am. Chem. Soc. 2021, 143, 8578–8582;
- 16fA.-W. Heard, N.-M.-A. Speakman, J.-R. Nitschke, Nat. Chem. 2021, 13, 824–826;
- 16gG.-L. Liu, X.-Q. Liu, L.-B. Sun, Chin. J. Struct. Chem. 2022, 41, 2211100–2211109;
- 16hL.-L. Dang, T.-T. Zhang, T. Chen, Y. Zhao, X. Gao, A. Francisco, L.-F. Ma, G.-X. Jin, Angew. Chem. Int. Ed. 2023, 62, e202301516.
- 17A. Mishra, A. Dubey, J.-W. Min, H. Kim, P. J. Stang, K.-W. Chi, Chem. Commun. 2014, 50, 7542–7544.
- 18
- 18aL.-L. Dang, T. Li, T. Zhang, Y. Zhao, T. Chen, X. Gao, L.-F. Ma, G.-X. Jin, Chem. Sci. 2022, 13, 5130–5140;
- 18bZ. Zhou, T. Wang, T. Hu, H. Xu, L. Cui, B. Xue, X. Zhao, Y.-S. Pan, H. Li, Y. Qin, J. Zhang, L.-F. Ma, R. Liang, C.-L. Tan, Adv. Mater. 2024, DOI: 10.1002/adma.202311002;
- 18cY. Zhao, Y. Chai, T. Chen, J. Zheng, T. Li, F. Aznarez, L.-L. Dang, L.-F. Ma, Chin. Chem. Lett. 2024, 35, 109298;
- 18dZ. Gao, Y.-L. Lai, Y. Tao, L.-H. Xiao, Z.-Y. Li, L.-X. Zhang, L.-J. Sun, F. Luo, Appl. Catal. B 2021, 297, 120485.
- 19Deposition Number(s) 2341438 (for 1 a), 2341439 (for 5 a), 2353365 (for 6 a), 2341440 (for 7) contain(s) the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 20H.-N. Zhang, W.-X. Gao, Y.-J. Lin, G.-X. Jin, J. Am. Chem. Soc. 2019, 141, 16057–16063.
- 21X. Gao, Z. Cui, Y.-R. Shen, D. Liu, Y.-J. Lin, G.-X. Jin, J. Am. Chem. Soc. 2021, 143, 17833–17842.
- 22Y.-W. Yang, L.-X. Meng, J.-Z. Zhang, Y.-D. Gao, Z.-J. Hao, Y. Liu, M.-J. Niu, X.-M. Zhang, X.-Y. Liu, S.-R. Liu, Adv. Sci. 2023, 11, 2307862.
- 23J.-Z. Zhang, D.-D. Sun, B. Zhang, Q.-Q. Sun, Y. Zhang, S.-R. Liu, Y. M. -Wang, C.-T. Liu, J.-Z. Chen, J.-B. Chen, Y.-L. Song, X.-Y. Liu, Mater. Horiz. 2022, 9, 1045–1056.
- 24M.-O. Saed, A.-H. Torbati, D.-P. Nair, C.-M. Yakacki, J. Visualization 2016, 107, e53546.
- 25M. Yuan, R.-X. Ma, Q.-Y. Ye, X. Bai, H.-C. Li, F.-F. Yan, C.-T. Liu, Y. Ren, Z. Wang, Chem. Eng. J. 2023, 455, 140771.