Water-Ice Microstructures and Hydration States of Acridinium Iodide Studied by Phosphorescence Spectroscopy
Hongping Liu
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorNing Chen
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorJie Cen
Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorJiajia Tan
Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorXiaoyu Chen
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorShengquan Fu
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorCorresponding Author
Prof. Xiaoguo Zhou
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorProf. Shilin Liu
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorCorresponding Author
Prof. Xuepeng Zhang
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorCorresponding Author
Prof. Shiyong Liu
Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorProf. Yi Luo
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorCorresponding Author
Prof. Guoqing Zhang
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
Hefei National Laboratory, Hefei, 230088 China
Search for more papers by this authorHongping Liu
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorNing Chen
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorJie Cen
Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorJiajia Tan
Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorXiaoyu Chen
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorShengquan Fu
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorCorresponding Author
Prof. Xiaoguo Zhou
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorProf. Shilin Liu
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorCorresponding Author
Prof. Xuepeng Zhang
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorCorresponding Author
Prof. Shiyong Liu
Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorProf. Yi Luo
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
Search for more papers by this authorCorresponding Author
Prof. Guoqing Zhang
Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
Hefei National Laboratory, Hefei, 230088 China
Search for more papers by this authorGraphical Abstract
Phosphorescence spectroscopy was utilized to visualize the microstructure transition of water at varying temperatures from 298 K to 77 K at a probe concentration of ~10−5 M, showing higher sensitivity by at least two orders of magnitude than absorption-base techniques. By this unique means, it was found that a trace amount (as low as 10−5 M) of organic hydrophiles could thoroughly prevent the crystallization of water ice at freezing temperatures.
Abstract
Ice has been suggested to have played a significant role in the origin of life partly owing to its ability to concentrate organic molecules and promote reaction efficiency. However, the techniques for studying organic molecules in ice are absorption-based, which limits the sensitivity of measurements. Here we introduce an emission-based method to study organic molecules in water ice: the phosphorescence displays high sensitivity depending on the hydration state of an organic salt probe, acridinium iodide (ADI). The designed ADI aqueous system exhibits phosphorescence that can be severely perturbed when the temperature is higher than 110 K at a concentration of the order of 10−5 M, indicating changes in hydration for ADI. Using the ADI phosphorescent probe, it is found that the microstructures of water ice, i.e., crystalline vs. glassy, can be strongly dictated by a trace amount (as low as 10−5 M) of water-soluble organic molecules. Consistent with cryoSEM images and temperature-dependent Raman spectral data, the ADI is dehydrated in more crystalline ice and hydrated in more glassy ice. The current investigation serves as a starting point for using more sensitive spectroscopic techniques for studying water-organics interactions at a much lower concentration and wider temperature range.
Conflict of interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202405314-sup-0001-misc_information.pdf16.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1R. Krishnamurthy, N. V. Hud, Chem. Rev. 2020, 120, 4613–4615.
- 2M. K. McClure, W. R. M. Rocha, K. M. Pontoppidan, M. E. Palumbo, T. Shimonishi, J. A. Sturm, E. F. van Dishoeck, H. Linnartz, Nat. Astron. 2023, 7, 431–443.
- 3T. Chang, G. Zhao, Adv. Sci. 2021, 8, 2002425.
- 4H. Mutschler, A. Wochner, P. Holliger, Nat. Chem. 2015, 7, 502–508.
- 5J. Attwater, A. Wochner, P. Holliger, Nat. Chem. 2013, 5, 1011–1018.
- 6J. Attwater, A. Wochner, V. B. Pinheiro, A. Coulson, P. Holliger, Nat. Commun. 2010, 1, 76.
- 7J. Li, Z. Shen, J. Wang, X. Chen, D. Li, Y. Wu, J. Dong, R. Zhao, W. Gou, J. Wang, S. Li, B. Wang, X. Zheng, Astrophys. J. Lett. 2017, 849, 115.
- 8J. He, F. E. Toriello, S. M. Emtiaz, T. Henning, G. Vidali, Astrophys. J. Lett. 2021, 915, L23.
- 9M. Tsuge, G. Molpeceres, Y. Aikawa, N. Watanabe, Nat. Astron. 2023, 7, 1351–1358.
- 10K. Kim, J. Ju, B. Kim, H. Y. Chung, L. Vetráková, D. Heger, A. Saiz-Lopez, W. Choi, J. Kim, Environ. Sci. Technol. 2019, 53, 4892–4900.
- 11P. Xu, B. Cui, Y. Bu, H. Wang, X. Guo, P. Wang, Y. R. Shen, L. Tong, Science 2021, 373, 187–192.
- 12X. Wang, S.-C. Huang, S. Hu, S. Yan, B. Ren, Nat. Rev. Phys. 2020, 2, 253–271.
- 13T. Dittmar, S. T. Lennartz, H. Buck-Wiese, D. A. Hansell, C. Santinelli, C. Vanni, B. Blasius, J.-H. Hehemann, Nat. Rev. Earth Environ. 2021, 2, 570–583.
- 14W. Zhao, Z. He, B. Z. Tang, Nat. Rev. Mater. 2020, 5, 869–885.
- 15B. Zhou, D. Yan, Adv. Funct. Mater. 2019, 29, 1807599.
- 16B. Zhou, G. Xiao, D. Yan, Adv. Mater. 2021, 33, 2007571.
- 17Y. Zhang, L. Gao, X. Zheng, Z. Wang, C. Yang, H. Tang, L. Qu, Y. Li, Y. Zhao, Nat. Commun. 2021, 12, 2297.
- 18Y. Zhang, X. Chen, J. Xu, Q. Zhang, L. Gao, Z. Wang, L. Qu, K. Wang, Y. Li, Z. Cai, Y. Zhao, C. Yang, J. Am. Chem. Soc. 2022, 144, 6107–6117.
- 19X. Zhang, L. Du, W. Zhao, Z. Zhao, Y. Xiong, X. He, P. F. Gao, P. Alam, C. Wang, Z. Li, J. Leng, J. Liu, C. Zhou, J. W. Y. Lam, D. L. Phillips, G. Zhang, B. Z. Tang, Nat. Commun. 2019, 10, 5161.
- 20K. Y. Zhang, Q. Yu, H. Wei, S. Liu, Q. Zhao, W. Huang, Chem. Rev. 2018, 118, 1770–1839.
- 21G. Zhang, G. M. Palmer, M. W. Dewhirst, C. L. Fraser, Nat. Mater. 2009, 8, 747–751.
- 22J. Yu, Z. Sun, H. Ma, C. Wang, W. Huang, Z. He, W. Wu, H. Hu, W. Zhao, W.-H. Zhu, Angew. Chem. Int. Ed. 2023, n/a, e202316647.
- 23J. Yang, X. Zhen, B. Wang, X. Gao, Z. Ren, J. Wang, Y. Xie, J. Li, Q. Peng, K. Pu, Z. Li, Nat. Commun. 2018, 9, 840.
- 24Z. Xu, Z. Wang, W. Yao, Y. Gao, Y. Li, H. Shi, W. Huang, Z. An, Angew. Chem. Int. Ed. 2023, 62, e202301564.
- 25J. Wang, Z. Huang, X. Ma, H. Tian, Angew. Chem. Int. Ed. 2020, 59, 9928–9933.
- 26Y. Su, S. Z. F. Phua, Y. Li, X. Zhou, D. Jana, G. Liu, W. Q. Lim, W. K. Ong, C. Yang, Y. Zhao, Sci. Adv. 2018, 4, eaas9732.
- 27H. Su, K. Hu, W. Huang, T. Wang, X. Zhang, B. Chen, H. Miao, X. Zhang, G. Zhang, Angew. Chem. Int. Ed. 2023, 62, e202218712.
- 28E. G. McRae, M. Kasha, J. Chem. Phys. 1958, 28, 721–722.
- 29L. Ma, Q. Xu, S. Sun, B. Ding, Z. Huang, X. Ma, H. Tian, Angew. Chem. Int. Ed. 2022, 61, e202115748.
- 30D. Li, Y. Yang, J. Yang, M. Fang, B. Z. Tang, Z. Li, Nat. Commun. 2022, 13, 347.
- 31D. Li, F. Lu, J. Wang, W. Hu, X.-M. Cao, X. Ma, H. Tian, J. Am. Chem. Soc. 2018, 140, 1916–1923.
- 32G. N. Lewis, M. Kasha, J. Am. Chem. Soc. 1944, 66, 2100–2116.
- 33M. Kasha, J. Chem. Phys. 1952, 20, 71–74.
- 34R. Kabe, C. Adachi, Nature 2017, 550, 384–387.
- 35Z. He, W. Zhao, J. W. Y. Lam, Q. Peng, H. Ma, G. Liang, Z. Shuai, B. Z. Tang, Nat. Commun. 2017, 8, 416.
- 36L. Gu, H. Shi, L. Bian, M. Gu, K. Ling, X. Wang, H. Ma, S. Cai, W. Ning, L. Fu, H. Wang, S. Wang, Y. Gao, W. Yao, F. Huo, Y. Tao, Z. An, X. Liu, W. Huang, Nat. Photonics 2019, 13, 406–411.
- 37M. A. El-Sayed, Acc. Chem. Res. 1971, 4, 23–31.
- 38B. Ding, L. Ma, Z. Huang, X. Ma, H. Tian, Sci. Adv. 2021, 7, eabf9668.
- 39W. Dai, G. Li, Y. Zhang, Y. Ren, Y. Lei, J. Shi, B. Tong, Z. Cai, Y. Dong, Adv. Funct. Mater. 2023, 33, 2210102.
- 40X. Chen, C. Xu, T. Wang, C. Zhou, J. Du, Z. Wang, H. Xu, T. Xie, G. Bi, J. Jiang, X. Zhang, J. N. Demas, C. O. Trindle, Y. Luo, G. Zhang, Angew. Chem. Int. Ed. 2016, 55, 9872–9876.
- 41C. D. Buckley, D. A. Hunter, P. J. Hore, K. A. McLauchlan, Chem. Phys. Lett. 1987, 135, 307–312.
- 42L. Bian, H. Shi, X. Wang, K. Ling, H. Ma, M. Li, Z. Cheng, C. Ma, S. Cai, Q. Wu, N. Gan, X. Xu, Z. An, W. Huang, J. Am. Chem. Soc. 2018, 140, 10734–10739.
- 43X. Nie, W. Huang, D. Zhou, T. Wang, X. Wang, B. Chen, X. Zhang, G. Zhang, Aggregate 2022, 3, e165.
- 44H. Sun, L. Zhu, Aggregate 2023, 4, e253.
- 45L. Huang, B. Chen, X. Zhang, C. O. Trindle, F. Liao, Y. Wang, H. Miao, Y. Luo, G. Zhang, Angew. Chem. Int. Ed. 2018, 57, 16046–16050.
- 46S. O. Liubimovskii, V. S. Novikov, L. Y. Ustynyuk, P. V. Ivchenko, K. A. Prokhorov, V. V. Kuzmin, E. A. Sagitova, M. M. Godyaeva, S. V. Gudkov, M. E. Darvin, G. Y. Nikolaeva, Spectrochim. Acta Part A 2023, 285, 121927.
- 47T. Li, F. Li, Z. Li, C. Sun, J. Tong, W. Fang, Z. Men, Opt. Lett. 2016, 41, 1297–1300.
- 48K. E. Otto, Z. Xue, P. Zielke, M. A. Suhm, Phys. Chem. Chem. Phys. 2014, 16, 9849–9858.
- 49Z. Men, W. Fang, S. Wang, Z. Li, C. Sun, X. Wang, J. Raman Spectrosc. 2015, 46, 388–391.