Revealing the Influence of Electron Migration Inside Polymer Electrolyte on Li+ Transport and Interphase Reconfiguration for Li Metal Batteries
Dr. Yingmin Jin
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorRuifan Lin
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorYumeng Li
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorXuebai Zhang
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorDr. Siping Tan
State Key Laboratory of Advanced Chemical Power Sources, Guizhou Meiling Power Sources Co. Ltd., Zunyi, Guizhou, 563003 China
Search for more papers by this authorCorresponding Author
Prof. Yong Shuai
Key Laboratory of Aerospace Thermophysics of MIIT, School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorCorresponding Author
Prof. Yueping Xiong
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorDr. Yingmin Jin
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorRuifan Lin
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorYumeng Li
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorXuebai Zhang
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorDr. Siping Tan
State Key Laboratory of Advanced Chemical Power Sources, Guizhou Meiling Power Sources Co. Ltd., Zunyi, Guizhou, 563003 China
Search for more papers by this authorCorresponding Author
Prof. Yong Shuai
Key Laboratory of Aerospace Thermophysics of MIIT, School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorCorresponding Author
Prof. Yueping Xiong
MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001 China
Search for more papers by this authorGraphical Abstract
In this work, La0.6Sr0.4CoO3−δ (LSC) enriched with high valence-state Co species and oxygen vacancies is developed as electronically conductive nanofillers embedded within ZnO/Zn3N2-functionalized polyimide nanofiber framework to establish Li+ transport highways for poly vinylene carbonate electrolyte and eliminate nonuniform Li deposits.
Abstract
The development of highly producible and interfacial compatible in situ polymerized electrolytes for solid-state lithium metal batteries (SSLMBs) have been plagued by insufficient transport kinetics and uncontrollable dendrite propagation. Herein, we seek to explore a rationally designed nanofiber architecture to balance all the criteria of SSLMBs, in which La0.6Sr0.4CoO3−δ (LSC) enriched with high valence-state Co species and oxygen vacancies is developed as electronically conductive nanofillers embedded within ZnO/Zn3N2-functionalized polyimide (Zn-PI) nanofiber framework for the first time, to establish Li+ transport highways for poly vinylene carbonate (PVC) electrolyte and eliminate nonuniform Li deposits. Revealed by characterization and theoretical calculation under electric field, the positive-negative electrical dipole layer in LSC derived from electron migration between Co and O atoms aids in accelerating Li+ diffusion kinetics through densified electric field around filler particle, featuring a remarkable ionic conductivity of 1.50 mS cm−1 at 25 °C and a high Li+ transference number of 0.91 without the risk of electron leakage. Integrating with the preferential sacrifice of ZnO/Zn3N2 on PI nanofiber upon immediate detection of dendritic Li, which takes part in reconfiguring hierarchical SEI chemistry dominated by LixNy/Li−Zn alloy inner layer and LiF outer layer, SSLMBs are further endowed with prolonged cycling lifespan and exceptional rate capability.
Conflict of interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202403661-sup-0001-misc_information.pdf3.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aD. C. Lin, Y. Y. Liu, Y. Cui, Nat. Nanotechnol. 2017, 12, 194–206;
- 1bX.-B. Cheng, R. Zhang, C.-Z. Zhao, Q. Zhang, Chem. Rev. 2017, 117, 10403–10473.
- 2T. Krauskopf, F. H. Richter, W. G. Zeier, J. Janek, Chem. Rev. 2020, 120, 7745–7794.
- 3
- 3aY. Zheng, Y. Yao, J. Ou, M. Li, D. Luo, H. Dou, Z. Li, K. Amine, A. Yu, Z. Chen, Chem. Soc. Rev. 2020, 49, 8790–8839;
- 3bZ. Li, J. Fu, X. Zhou, S. Gui, L. Wei, H. Yang, H. Li, X. Guo, Adv. Sci. 2023, 10, e2201718.
- 4X. Miao, S. Guan, C. Ma, L. Li, C.-W. Nan, Adv. Mater. 2023, 35, 2206402.
- 5
- 5aW. Yu, N. Deng, D. Shi, L. Gao, B. Cheng, G. Li, W. Kang, ACS Nano 2023, 17, 22872–22884;
- 5bJ. Kang, N. Deng, D. Shi, Y. Feng, Z. Wang, L. Gao, Y. Song, Y. Zhao, B. Cheng, G. Li, W. Kang, K. Zhang, Adv. Funct. Mater. 2023, 33, 2307263;
- 5cL.-Z. Fan, H. He, C.-W. Nan, Nat. Rev. Mater. 2021, 6, 1003–1019.
- 6
- 6aJ. Bae, Y. Li, F. Zhao, X. Zhou, Y. Ding, G. Yu, Energy Storage Mater. 2018, 15, 46–52;
- 6bX. Li, L. Cong, S. Ma, S. Shi, Y. Li, S. Li, S. Chen, C. Zheng, L. Sun, Y. Liu, H. Xie, Adv. Funct. Mater. 2021, 31, 2010611;
- 6cC. Hu, Y. Shen, M. Shen, X. Liu, H. Chen, C. Liu, T. Kang, F. Jin, L. Li, J. Li, Y. Li, N. Zhao, X. Guo, W. Lu, B. Hu, L. Chen, J. Am. Chem. Soc. 2020, 142, 18035–18041.
- 7Y. Jin, X. Zong, X. Zhang, Z. Jia, H. Xie, Y. Xiong, Energy Storage Mater. 2022, 49, 433–444.
- 8N. Wu, P. H. Chien, Y. Li, A. Dolocan, H. Xu, B. Xu, N. S. Grundish, H. Jin, Y. Y. Hu, J. B. Goodenough, J. Am. Chem. Soc. 2020, 142, 2497–2505.
- 9
- 9aS. Hu, L. Du, G. Zhang, W. Zou, Z. Zhu, L. Xu, L. Mai, ACS Appl. Mater. Interfaces 2021, 13, 13183–13190;
- 9bP. Shi, J. Ma, M. Liu, S. Guo, Y. Huang, S. Wang, L. Zhang, L. Chen, K. Yang, X. Liu, Y. Li, X. An, D. Zhang, X. Cheng, Q. Li, W. Lv, G. Zhong, Y. B. He, F. Kang, Nat. Nanotechnol. 2023, 18, 602.
- 10W. Liu, D. C. Lin, J. Sun, G. M. Zhou, Y. Cui, ACS Nano 2016, 10, 11407–11413.
- 11H. Chen, D. Adekoya, L. Hencz, J. Ma, S. Chen, C. Yan, H. Zhao, G. Cui, S. Zhang, Adv. Energy Mater. 2020, 10, 2000049.
- 12N. Wu, P. H. Chien, Y. Qian, Y. Li, H. Xu, N. S. Grundish, B. Xu, H. Jin, Y. Y. Hu, G. Yu, J. B. Goodenough, Angew. Chem. Int. Ed. Engl. 2020, 59, 4131–4137.
- 13J. Kang, Z. Yan, L. Gao, Y. Zhang, W. Liu, Q. Yang, Y. Zhao, N. Deng, B. Cheng, W. Kang, Energy Storage Mater. 2022, 53, 192–203.
- 14X. Guo, Z. Ju, X. Qian, Y. Liu, X. Xu, G. Yu, Angew. Chem. Int. Ed. Engl. 2023, 62, e202217538.
- 15Q. Zhou, X. Yang, X. Xiong, Q. Zhang, B. Peng, Y. Chen, Z. Wang, L. Fu, Y. Wu, Adv. Energy Mater. 2022, 12, 2201991.
- 16P. Zou, C. Wang, Y. He, H. L. Xin, Energy Environ. Sci. 2023, 16, 5871–5880.
- 17Q. Ji, L. Bi, J. Zhang, H. Cao, X. S. Zhao, Energy Environ. Sci. 2020, 13, 1408–1428.
- 18
- 18aG. M. Rupp, A. K. Opitz, A. Nenning, A. Limbeck, J. Fleig, Nat. Mater. 2017, 16, 640–645;
- 18bE. J. Crumlin, S.-J. Ahn, D. Lee, E. Mutoro, M. D. Biegalski, H. M. Christen, Y. Shao-Horn, J. Electrochem. Soc. 2012, 159, F219–F225;
- 18cP. P. Lopes, D. Y. Chung, X. Rui, H. Zheng, H. He, P. F. B. D. Martins, D. Strmcnik, V. R. Stamenkovic, P. Zapol, J. F. Mitchell, R. F. Klie, N. M. Markovic, J. Am. Chem. Soc. 2021, 143, 2741–2750.
- 19Y. Jin, Y. Li, R. Lin, X. Zhang, Y. Shuai, Y. Xiong, Small 2023, 2307942.
- 20
- 20aD. Zhou, D. Shanmukaraj, A. Tkacheva, M. Armand, G. Wang, Chem 2019, 5, 2326–2352;
- 20bJ. Lu, J. Zhou, R. Chen, F. Fang, K. Nie, W. Qi, J.-N. Zhang, R. Yang, X. Yu, H. Li, L. Chen, X. Huang, Energy Storage Mater. 2020, 32, 191–198;
- 20cS.-J. Tan, J. Yue, Y.-F. Tian, Q. Ma, J. Wan, Y. Xiao, J. Zhang, Y.-X. Yin, R. Wen, S. Xin, Y.-G. Guo, Energy Storage Mater. 2021, 39, 186–193.
- 21
- 21aX. Zhang, M. Zhang, J. Wu, X. Hu, B. Fu, Z. Zhang, B. Luo, K. Khan, Z. Fang, Z. Xu, M. Wu, Nano Energy 2023, 115, 108700;
- 21bM. D. Tikekar, S. Choudhury, Z. Tu, L. A. Archer, Nat. Energy 2016, 1, 1–7;
- 21cE. Peled, S. Menkin, J. Electrochem. Soc. 2017, 164, A1703–A1719;
- 21dS. Grugeon, P. Jankowski, D. Cailleu, C. Forestier, L. Sannier, M. Armand, P. Johansson, S. Laruelle, J. Power Sources 2019, 427, 77–84.
- 22
- 22aH. Kozuka, H. Yamada, T. Hishida, K. Yamagiwa, K. Ohbayashi, K. Koumoto, J. Mater. Chem. 2012, 22, 20217–20222;
- 22bX. Cheng, E. Fabbri, Y. Yamashita, I. E. Castelli, B. Kim, M. Uchida, R. Haumont, I. Puente-Orench, T. J. Schmidt, ACS Catal. 2018, 8, 9567–9578.
- 23
- 23aW. Lee, J. W. Han, Y. Chen, Z. Cai, B. Yildiz, J. Am. Chem. Soc. 2013, 135, 7909–7925;
- 23bS. He, M. Saunders, K. Chen, H. Gao, A. Suvorova, W. Rickard, Z. Quadir, C. Cui, S. Jiang, J. Electrochem. Soc. 2018, 165, F417–F429.
- 24S. Thareja, A. Kumar, J. Phys. Chem. C 2021, 125, 24837–24848.
- 25R. Fang, B. Xu, N. S. Grundish, Y. Xia, Y. Li, C. Lu, Y. Liu, N. Wu, J. B. Goodenough, Angew. Chem. Int. Ed. Engl. 2021, 60, 17701–17706.
- 26
- 26aS. Qin, Y. Yu, J. Zhang, Y. Ren, C. Sun, S. Zhang, L. Zhang, W. Hu, H. Yang, D. Yang, Adv. Energy Mater. 2023, 13, 2301470;
- 26bJ. Li, T. Zhang, X. Hui, R. Zhu, Q. Sun, X. Li, L. Yin, Adv. Sci. 2023, 10, 2300226;
- 26cY. Jiang, Y. Song, X. Chen, H. Wang, L. Deng, G. Yang, Energy Storage Mater. 2022, 52, 514–523;
- 26dS. Qin, Z. Wang, Y. Ren, Y. Yu, Y. Xiao, J. Chen, J. Zhang, S. Zhang, C. Sun, J. Xiao, L. Zhang, W. Hu, H. Yang, Nano Energy 2024, 119, 109075;
- 26eJ. Yang, R. Li, P. Zhang, J. Zhang, J. Meng, L. Li, Z. Li, X. Pu, Energy Storage Mater. 2024, 64, 103088.
- 27
- 27aY. Liu, X. Tao, Y. Wang, C. Jiang, C. Ma, O. Sheng, G. Lu, X. W. Lou, Science 2022, 375, 739–745;
- 27bX. Q. Zhang, X. B. Cheng, X. Chen, C. Yan, Q. Zhang, Adv. Funct. Mater. 2017, 27, 1605989.
- 28G. Zhou, J. Yu, J. Liu, X. Lin, Y. Wang, H. M. Law, F. Ciucci, Cell Rep. Phys. Sci. 2022, 3, 100722.
- 29C. Liu, B. Chen, T. Zhang, J. Zhang, R. Wang, J. Zheng, Q. Mao, X. Liu, Angew. Chem. Int. Ed. Engl. 2023, 62, e202302655.
- 30
- 30aZ. Ren, J. Li, M. Cai, R. Yin, J. Liang, Q. Zhang, C. He, X. Jiang, X. Ren, J. Mater. Chem. A 2023, 11, 1966–1977;
- 30bL. Xu, S. Li, H. Tu, F. Zhu, H. Liu, W. Deng, J. Hu, G. Zou, H. Hou, X. Ji, ACS Nano 2023, 17, 22082–22094;
- 30cL. Tang, B. Chen, Z. Zhang, C. Ma, J. Chen, Y. Huang, F. Zhang, Q. Dong, G. Xue, D. Chen, C. Hu, S. Li, Z. Liu, Y. Shen, Q. Chen, L. Chen, Nat. Commun. 2023, 14, 1–10;
- 30dJ. P. Hoffknecht, A. Wettstein, J. Atik, C. Krause, J. Thienenkamp, G. Brunklaus, M. Winter, D. Diddens, A. Heuer, E. Paillard, Adv. Energy Mater. 2022, 13, 2202789;
- 30eS. Lv, X. He, Z. Ji, S. Yang, L. Feng, X. Fu, W. Yang, Y. Wang, Adv. Energy Mater. 2023, 13, 2302711;
- 30fJ. Zhou, X. Wang, J. Fu, L. Chen, X. Wei, R. Jia, L. Shi, Small 2023, 2309317;
- 30gZ. Tian, L. Hou, D. Feng, P. Wu, Y. Jiao, ACS Nano 2023, 17, 3786–3796;
- 30hS. Qin, Y. Cao, J. Zhang, Y. Ren, C. Sun, S. Zhang, L. Zhang, W. Hu, M. Yu, H. Yang, Carbon Energy 2023, 5, e316;
- 30iJ. Li, H. Zhang, Y. Cui, H. Da, Y. Cai, S. Zhang, Nano Energy 2022, 102, 107716;
- 30jY. Shan, L. Li, X. Chen, S. Fan, H. Yang, Y. Jiang, ACS Energy Lett. 2022, 7, 2289–2296.
- 31G. Kresse, J. Furthmuller, Comput. Mater. Sci. 1996, 6, 15–50.
- 32G. Kresse, J. Furthmuller, Phys. Rev. B 1996, 54, 11169–11186.
- 33J. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865–3868.
- 34B. Hammer, L. Hansen, J. Norskov, Phys. Rev. B 1999, 59, 7413–7421.
- 35P. Blochl, Phys. Rev. B 1994, 50, 17953–17979.
- 36P. Hasnip, C. Pickard, Comput. Phys. Commun. 2006, 174, 24–29.
- 37A. Rappe, C. Casewit, K. Colwell, W. Goddard, W. Skiff, J. Am. Chem. Soc. 1992, 114, 10024–10035.
- 38S. Nosé, J. Chem. Phys. 1984, 81, 511–519.