Volume 63, Issue 24 e202402312
Research Article

Layer-Controllable “2.5D” DNA Origami Crystals Synthesized by a Hierarchical Assembly Strategy

Xiaolin Xie

Xiaolin Xie

College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023 China

Search for more papers by this author
Min Ji

Min Ji

College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023 China

Search for more papers by this author
Xuehui Yan

Xuehui Yan

College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023 China

Search for more papers by this author
Yifan Yu

Yifan Yu

College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023 China

Search for more papers by this author
Yong Wang

Yong Wang

College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023 China

Search for more papers by this author
Ningning Ma

Ningning Ma

College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023 China

Search for more papers by this author
Prof. Dr. Hang Xing

Prof. Dr. Hang Xing

Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China

Search for more papers by this author
Prof. Dr. Ye Tian

Corresponding Author

Prof. Dr. Ye Tian

College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023 China

Search for more papers by this author
First published: 05 April 2024
Citations: 7

Graphical Abstract

A hierarchical assembly strategy for fabricating “2.5D” (2.5 dimensional) DNA origami crystals with customizable layer properties and achieve various 2.5D assemblies with different layer numbers, interlayer distances and surface morphologies.

Abstract

The finite periodic arrangement of functional nanomaterials on the two-dimensional scale enables the integration and enhancement of individual properties, making them an important research topic in the field of tuneable nanodevices. Although layer-controllable lattices such as graphene have been successfully synthesized, achieving similar control over colloidal nanoparticles remains a challenge. DNA origami technology has achieved remarkable breakthroughs in programmed nanoparticle assembly. Based on this technology, we proposed a hierarchical assembly strategy to construct a universal DNA origami platform with customized layer properties, which we called 2.5-dimensional (2.5D) DNA origami crystals. Methodologically, this strategy divides the assembly procedure into two steps: 1) array synthesis, and 2) lattice synthesis, which means that the layer properties, including layer number, interlayer distance, and surface morphology, can be flexibly customized based on the independent designs in each step. In practice, these synthesized 2.5D crystals not only pioneer the expansion of the DNA origami crystal library to a wider range of dimensions, but also highlight the technological potential for templating 2.5D colloidal nanomaterial lattices.

Conflict of interests

The authors declare no conflict of interest.

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.