Strategies for Achieving Ultra-Long ORR Durability—Rh Activates Interatomic Interactions in Alloys
Xiaoke Li
National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, 22 Hankou Road, Nanjing, 210093 P. R. China
Institute of Energy Power Innovation, North China Electric Power University, 2 Beinong Road, Beijing, 102206 P. R. China.
These authors contributed equally to this work
Search for more papers by this authorXiao Duan
National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, 22 Hankou Road, Nanjing, 210093 P. R. China
These authors contributed equally to this work
Search for more papers by this authorSiao Zhang
Institute of Energy Power Innovation, North China Electric Power University, 2 Beinong Road, Beijing, 102206 P. R. China.
Search for more papers by this authorChuanjie Wang
Institute of Energy Power Innovation, North China Electric Power University, 2 Beinong Road, Beijing, 102206 P. R. China.
Search for more papers by this authorKang Hua
National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, 22 Hankou Road, Nanjing, 210093 P. R. China
Search for more papers by this authorZejin Wang
National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, 22 Hankou Road, Nanjing, 210093 P. R. China
Search for more papers by this authorYongkang Wu
National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, 22 Hankou Road, Nanjing, 210093 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Jia Li
Institute of Energy Power Innovation, North China Electric Power University, 2 Beinong Road, Beijing, 102206 P. R. China.
Search for more papers by this authorCorresponding Author
Prof. Jianguo Liu
Institute of Energy Power Innovation, North China Electric Power University, 2 Beinong Road, Beijing, 102206 P. R. China.
Search for more papers by this authorXiaoke Li
National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, 22 Hankou Road, Nanjing, 210093 P. R. China
Institute of Energy Power Innovation, North China Electric Power University, 2 Beinong Road, Beijing, 102206 P. R. China.
These authors contributed equally to this work
Search for more papers by this authorXiao Duan
National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, 22 Hankou Road, Nanjing, 210093 P. R. China
These authors contributed equally to this work
Search for more papers by this authorSiao Zhang
Institute of Energy Power Innovation, North China Electric Power University, 2 Beinong Road, Beijing, 102206 P. R. China.
Search for more papers by this authorChuanjie Wang
Institute of Energy Power Innovation, North China Electric Power University, 2 Beinong Road, Beijing, 102206 P. R. China.
Search for more papers by this authorKang Hua
National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, 22 Hankou Road, Nanjing, 210093 P. R. China
Search for more papers by this authorZejin Wang
National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, 22 Hankou Road, Nanjing, 210093 P. R. China
Search for more papers by this authorYongkang Wu
National Laboratory of Solid-State Microstructures, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, 22 Hankou Road, Nanjing, 210093 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Jia Li
Institute of Energy Power Innovation, North China Electric Power University, 2 Beinong Road, Beijing, 102206 P. R. China.
Search for more papers by this authorCorresponding Author
Prof. Jianguo Liu
Institute of Energy Power Innovation, North China Electric Power University, 2 Beinong Road, Beijing, 102206 P. R. China.
Search for more papers by this authorGraphical Abstract
By modulating the interatomic interactions between the constituent atoms of the catalyst, a novel approach has been introduced to prevent the dissolution of transition metals, resulting in ultra-long durability in the oxygen reduction reaction (ORR). Rh−Pt3Co/C catalysts demonstrate high activity and excellent durability with low platinum group metal (PGM) loading.
Abstract
The stability of platinum-based alloy catalysts is crucial for the future development of proton exchange membrane fuel cells, considering the potential dissolution of transition metals under complex operating conditions. Here, we report on a Rh-doped Pt3Co alloy that exhibits strong interatomic interactions, thereby enhancing the durability of fuel cells. The Rh−Pt3Co/C catalyst demonstrates exceptional catalytic activity for oxygen reduction reactions (ORR) (1.31 A mgPt−1 at 0.9 V vs. the reversible hydrogen electrode (RHE) and maintaining 92 % of its mass activity after 170,000 potential cycles). Long-term testing has shown direct inhibition of Co dissolution in Rh−Pt3Co/C. Furthermore, tests on proton exchange membrane fuel cells (PEMFC) have shown excellent performance and long-term durability with low Pt loading. After 50,000 cycles, there was no voltage loss at 0.8 A cm−2 for Rh−Pt3Co/C, while Pt3Co/C experienced a loss of 200 mV. Theoretical calculations suggest that introducing transition metal atoms through doping creates a stronger compressive strain, which in turn leads to increased catalytic activity. Additionally, Rh doping increases the energy barrier for Co diffusion in the bulk phase, while also raising the vacancy formation energy of the surface Pt. This ensures the long-term stability of the alloy over the course of the cycle.
Conflict of interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202400549-sup-0001-misc_information.pdf3.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aK. Jiao, J. Xuan, Q. Du, Z. Bao, B. Xie, B. Wang, Y. Zhao, L. Fan, H. Wang, Z. Hou, S. Huo, N. P. Brandon, Y. Yin, M. D. Guiver, Nature 2021, 595, 361–369;
- 1bL. Chen, Y. Chen, W.-Q. Tao, Renewable Sustainable Energy Rev. 2023, 173, 113050.
- 2M. Shao, Q. Chang, J.-P. Dodelet, R. Chenitz, Chem. Rev. 2016, 116, 3594–3657.
- 3
- 3aS. Zhu, X. Wang, E. Luo, L. Yang, Y. Chu, L. Gao, Z. Jin, C. Liu, J. Ge, W. Xing, ACS Energy Lett. 2020, 5, 3021–3028;
- 3bD. Banham, J. Zou, S. Mukerjee, Z. Liu, D. Yang, Y. Zhang, Y. Peng, A. Dong, J. Power Sources 2021, 490, 229515;
- 3cC.-Y. Ahn, J. E. Park, S. Kim, O.-H. Kim, W. Hwang, M. Her, S. Y. Kang, S. Park, O. J. Kwon, H. S. Park, Y.-H. Cho, Y.-E. Sung, Chem. Rev. 2021, 121, 15075–15140.
- 4
- 4aJ. Zhang, Y. Yuan, L. Gao, G. Zeng, M. Li, H. Huang, Adv. Mater. 2021, 33, 2006494;
- 4bD. J. S. Sandbeck, N. M. Secher, M. Inaba, J. Quinson, J. E. Sørensen, J. Kibsgaard, A. Zana, F. Bizzotto, F. D. Speck, M. T. Y. Paul, A. Dworzak, C. Dosche, M. Oezaslan, I. Chorkendorff, M. Arenz, S. Cherevko, J. Electrochem. Soc. 2020, 167, 164501;
- 4cD. J. S. Sandbeck, M. Inaba, J. Quinson, J. Bucher, A. Zana, M. Arenz, S. Cherevko, ACS Appl. Mater. Interfaces 2020, 12, 25718–25727.
- 5A. K. Singh, L. Zhou, A. Shinde, S. K. Suram, J. H. Montoya, D. Winston, J. M. Gregoire, K. A. Persson, Chem. Mater. 2017, 29, 10159–10167.
- 6
- 6aF. Jiang, F. Zhu, F. Yang, X. Yan, A. Wu, L. Luo, X. Li, J. Zhang, ACS Catal. 2020, 10, 604–612;
- 6bY. Wang, F. Hao, M. Sun, M.-T. Liu, J. Zhou, Y. Xiong, C. Ye, X. Wang, F. Liu, J. Wang, P. Lu, Y. Ma, J. Yin, H.-C. Chen, Q. Zhang, L. Gu, H. M. Chen, B. Huang, Z. Fan, Adv. Mater. 2024, n/a, 2313548;
- 6cY. Wang, M. Sun, J. Zhou, Y. Xiong, Q. Zhang, C. Ye, X. Wang, P. Lu, T. Feng, F. Hao, F. Liu, J. Wang, Y. Ma, J. Yin, S. Chu, L. Gu, B. Huang, Z. Fan, Proc. Natl. Acad. Sci. USA 2023, 120, e2306461120;
- 6dJ. Zhou, Y. Xiong, M. Sun, Z. Xu, Y. Wang, P. Lu, F. Liu, F. Hao, T. Feng, Y. Ma, J. Yin, C. Ye, B. Chen, S. Xi, Y. Zhu, B. Huang, Z. Fan, Proc. Natl. Acad. Sci. USA 2023, 120, e2311149120.
- 7Y. Gao, N. Thakur, T. Uchiyama, W. Cao, K. Yamamoto, T. Watanabe, M. Kumar, R. Sato, T. Teranishi, H. Imai, Y. Sakurai, Y. Uchimoto, ACS Appl. Mater. Interfaces 2023, 15, 52473–52484.
- 8S. Chen, H. A. Gasteiger, K. Hayakawa, T. Tada, Y. Shao-Horn, J. Electrochem. Soc. 2010, 157, A82.
- 9Y. Cai, A. Kongkanand, W. Gu, T. E. Moylan, ECS Trans. 2015, 69, 1047.
- 10
- 10aS. Gong, Y.-X. Zhang, Z. Niu, ACS Catal. 2020, 10, 10886–10904;
- 10bJ. X. Wang, H. Inada, L. Wu, Y. Zhu, Y. Choi, P. Liu, W.-P. Zhou, R. R. Adzic, J. Am. Chem. Soc. 2009, 131, 17298–17302;
- 10cS. Cherevko, N. Kulyk, K. J. J. Mayrhofer, Nano Energy 2016, 29, 275–298.
- 11
- 11aY. Le Bouar, A. Loiseau, A. Finel, Phys. Rev. B 2003, 68, 224203;
- 11bM. Zhou, C. Li, J. Fang, Chem. Rev. 2021, 121, 736–795.
- 12Y. Xin, S. Li, Y. Qian, W. Zhu, H. Yuan, P. Jiang, R. Guo, L. Wang, ACS Catal. 2020, 10, 11280–11306.
- 13K. Sun, J. Li, F. Wang, W. He, M. Fei, Z. Lu, H. Zhang, J. Liu, Z. Zou, Chem. Commun. 2019, 55, 5693–5696.
- 14J. Kim, Y. Hong, K. Lee, J. Y. Kim, Adv. Energy Mater. 2020, 10, 2002049.
- 15
- 15aJ. Choi, J. Cho, C.-W. Roh, B.-S. Kim, M. S. Choi, H. Jeong, H. C. Ham, H. Lee, Appl. Catal. B 2019, 247, 142–149;
- 15bX. Duan, F. Cao, R. Ding, X. Li, Q. Li, R. Aisha, S. Zhang, K. Hua, Z. Rui, Y. Wu, J. Li, A. Li, J. Liu, Adv. Energy Mater. 2022, 12, 2103144;
- 15cF. Liu, K. Sun, Z. Rui, J. Liu, T. Juan, R. Liu, J. Luo, Z. Wang, Y. Yao, L. Huang, P. Wang, Z. Zou, ChemCatChem 2018, 10, 3049–3056.
- 16
- 16aJ. Chen, L. Liang, S. Tan, S. Xi, C.-H. Lin, T. Wu, Q. He, X. Liu, Nano Lett. 2023, 23, 7221–7227;
- 16bD. Mahlberg, A. Groß, ChemPhysChem 2021, 22, 29–39.
- 17X. Li, L. Jiang, J. Liu, Q. Hua, E. Wang, G. Xie, J. Energy Chem. 2020, 43, 121–128.
- 18W.-J. Zeng, C. Wang, Q.-Q. Yan, P. Yin, L. Tong, H.-W. Liang, Nat. Commun. 2022, 13, 7654.
- 19M. J. Hÿtch, E. Snoeck, R. Kilaas, Ultramicroscopy 1998, 74, 131–146.
- 20Y. Sugawara, M. Konno, I. Muto, N. Hara, Electrocatalysis 2018, 9, 539–549.
- 21Z. An, H. Li, X. Zhang, X. Xu, Z. Xia, S. Yu, W. Chu, S. Wang, G. Sun, ACS Catal. 2022, 12, 3302–3308.
- 22Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov, T. F. Jaramillo, Science 2017, 355, eaad4998.
- 23G. S. Karlberg, T. F. Jaramillo, E. Skúlason, J. Rossmeisl, T. Bligaard, J. K. Nørskov, Phys. Rev. Lett. 2007, 99, 126101.
- 24D. Zhou, J. Wei, Z.-D. He, M.-L. Xu, Y.-X. Chen, J. Huang, J. Phys. Chem. C 2020, 124, 13672–13678.
- 25S. Steinberg, R. Dronskowski, in Crystals, Vol. 8 2018.
- 26X. Shen, S. Dai, Y. Pan, L. Yao, J. Yang, X. Pan, J. Zeng, Z. Peng, ACS Catal. 2019, 9, 11431–11437.
- 27
- 27aZ. Zhao, Z. Liu, A. Zhang, X. Yan, W. Xue, B. Peng, H. L. Xin, X. Pan, X. Duan, Y. Huang, Nat. Nanotechnol. 2022, 17, 968–975;
- 27bY. Zeng, J. Liang, C. Li, Z. Qiao, B. Li, S. Hwang, N. N. Kariuki, C.-W. Chang, M. Wang, M. Lyons, S. Lee, Z. Feng, G. Wang, J. Xie, D. A. Cullen, D. J. Myers, G. Wu, J. Am. Chem. Soc. 2023, 145, 17643–17655;
- 27cX. Liu, Z. Zhao, J. Liang, S. Li, G. Lu, C. Priest, T. Wang, J. Han, G. Wu, X. Wang, Y. Huang, Q. Li, Angew. Chem. Int. Ed. 2023, 62, e202302134;
- 27dY. Luo, K. Li, Y. Chen, J. Feng, L. Wang, Y. Jiang, L. Li, G. Yu, J. Feng, Adv. Mater. 2023, 35, 2300624;
- 27eJ. Liang, Z. Zhao, N. Li, X. Wang, S. Li, X. Liu, T. Wang, G. Lu, D. Wang, B.-J. Hwang, Y. Huang, D. Su, Q. Li, Adv. Energy Mater. 2020, 10, 2000179;
- 27fY. J. Lee, H.-E. Kim, E. Lee, J. Lee, S. Shin, H. Yun, E. J. Kim, H. Jung, H. C. Ham, B. J. Kim, H. Lee, Adv. Energy Mater. 2021, 11, 2102970;
- 27gK. Wang, H. Yang, Q. Wang, J. Yu, Y. He, Y. Wang, S. Song, Y. Wang, Adv. Energy Mater. 2023, 13, 2204371;
- 27hW. Guo, X. Gao, M. Zhu, C. Xu, X. Zhu, X. Zhao, R. Sun, Z. Xue, J. Song, L. Tian, J. Xu, W. Chen, Y. Lin, Y. Li, H. Zhou, Y. Wu, Energy Environ. Sci. 2023, 16, 148–156;
- 27iQ. Cheng, S. Yang, C. Fu, L. Zou, Z. Zou, Z. Jiang, J. Zhang, H. Yang, Energy Environ. Sci. 2022, 15, 278–286;
- 27jZ. Qiao, C. Wang, C. Li, Y. Zeng, S. Hwang, B. Li, S. Karakalos, J. Park, A. J. Kropf, E. C. Wegener, Q. Gong, H. Xu, G. Wang, D. J. Myers, J. Xie, J. S. Spendelow, G. Wu, Energy Environ. Sci. 2021, 14, 4948–4960.
- 28X. Li, L. Jiang, J. Liu, Q. Hua, E. Wang, G. Xie, J. Energy Chem. 2020, 43, 121–128.
- 29M. J. Hÿtch, E. Snoeck, R. Kilaas, Ultramicroscopy 1998, 74, 131–146.
- 30J. Hafner, J. Comput. Chem. 2008, 29, 2044–2078.
- 31P. E. Blöchl, Phys. Rev. B 1994, 50, 17953–17979.
- 32J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865–3868.
- 33S. Grimme, J. Comput. Chem. 2006, 27, 1787–1799.
- 34C.-L. Yang, L.-N. Wang, P. Yin, J. Liu, M.-X. Chen, Q.-Q. Yan, Z.-S. Wang, S.-L. Xu, S.-Q. Chu, C. Cui, H. Ju, J. Zhu, Y. Lin, J. Shui, H.-W. Liang, Science 2021, 374, 459–464.
- 35R. Nelson, C. Ertural, J. George, V. L. Deringer, G. Hautier, R. Dronskowski, J. Comput. Chem. 2020, 41, 1931–1940.
- 36K. Deng, Y. Xu, Y. Li, Z. Dai, Z. Wang, X. Li, H. Wang, L. Wang, Nanotechnology 2020, 31, 025401.
- 37Z. An, H. Li, X. Zhang, X. Xu, Z. Xia, S. Yu, W. Chu, S. Wang, G. Sun, ACS Catal. 2022, 12, 3302–3308.
- 38H. Huang, K. Li, Z. Chen, L. Luo, Y. Gu, D. Zhang, C. Ma, R. Si, J. Yang, Z. Peng, J. Zeng, J. Am. Chem. Soc. 2017, 139, 8152–8159.
- 39V. Beermann, M. Gocyla, E. Willinger, S. Rudi, M. Heggen, R. E. Dunin-Borkowski, M.-G. Willinger, P. Strasser, Nano Lett. 2016, 16, 1719–1725.
- 40Y. Yan, F. Zhan, J. Du, Y. Jiang, C. Jin, M. Fu, H. Zhang, D. Yang, Nanoscale 2015, 7, 301–307.
- 41J. Guan, S. Yang, T. Liu, Y. Yu, J. Niu, Z. Zhang, F. Wang, Angew. Chem. Int. Ed. 2021, 60, 21899–21904.
- 42X. Liu, Z. Zhao, J. Liang, S. Li, G. Lu, C. Priest, T. Wang, J. Han, G. Wu, X. Wang, Y. Huang, Q. Li, Angew. Chem. Int. Ed. 2023, 62, e202302134.
- 43J. Liang, N. Li, Z. Zhao, L. Ma, X. Wang, S. Li, X. Liu, T. Wang, Y. Du, G. Lu, J. Han, Y. Huang, D. Su, Q. Li, Angew. Chem. Int. Ed. 2019, 58, 15471–15477.
- 44Z. Wang, X. Yao, Y. Kang, L. Miao, D. Xia, L. Gan, Adv. Funct. Mater. 2019, 29, 1902987.
- 45M. A. Matin, J. Lee, G. W. Kim, H.-U. Park, B. J. Cha, S. Shastri, G. Kim, Y.-D. Kim, Y.-U. Kwon, V. Petkov, Appl. Catal. B 2020, 267, 118727.
- 46W. Shi, A.-H. Park, Y.-U. Kwon, J. Electroanal. Chem. 2022, 918, 116451.
- 47X. Zhao, C. Xi, R. Zhang, L. Song, C. Wang, J. S. Spendelow, A. I. Frenkel, J. Yang, H. L. Xin, K. Sasaki, ACS Catal. 2020, 10, 10637–10645.
- 48E. Lee, K. A. Kuttiyiel, K.-H. Kim, J. Jang, H. J. Lee, J. M. Lee, M. H. Seo, T.-H. Yang, S.-D. Yim, J. A. Vargas, V. Petkov, K. Sasaki, R. R. Adzic, G.-G. Park, ACS Catal. 2021, 11, 5525–5531.