Tandem Electro-Thermo-Catalysis for the Oxidative Aminocarbonylation of Arylboronic Acids to Amides from CO2 and Water
Guoliang Mei
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
These authors contributed equally to this work.
Search for more papers by this authorYanze Lu
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
These authors contributed equally to this work.
Search for more papers by this authorXiaoju Yang
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
Search for more papers by this authorSanxia Chen
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
Search for more papers by this authorXuan Yang
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
Search for more papers by this authorLi-Ming Yang
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
Search for more papers by this authorCorresponding Author
Conghui Tang
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
Search for more papers by this authorCorresponding Author
Yujie Sun
Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221 USA
Search for more papers by this authorCorresponding Author
Bao Yu Xia
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
Search for more papers by this authorCorresponding Author
Bo You
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
Search for more papers by this authorGuoliang Mei
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
These authors contributed equally to this work.
Search for more papers by this authorYanze Lu
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
These authors contributed equally to this work.
Search for more papers by this authorXiaoju Yang
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
Search for more papers by this authorSanxia Chen
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
Search for more papers by this authorXuan Yang
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
Search for more papers by this authorLi-Ming Yang
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
Search for more papers by this authorCorresponding Author
Conghui Tang
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
Search for more papers by this authorCorresponding Author
Yujie Sun
Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221 USA
Search for more papers by this authorCorresponding Author
Bao Yu Xia
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
Search for more papers by this authorCorresponding Author
Bo You
Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074 China
Search for more papers by this authorGraphical Abstract
Abstract
Direct CO2 electroreduction to valuable chemicals is critical for carbon neutrality, while its main products are limited to simple C1/C2 compounds, and traditionally, the anodic O2 byproduct is not utilized. We herein report a tandem electrothermo-catalytic system that fully utilizes both cathodic (i.e., CO) and anodic (i.e., O2) products during overall CO2 electrolysis to produce valuable organic amides from arylboronic acids and amines in a separate chemical reactor, following the Pd(II)-catalyzed oxidative aminocarbonylation mechanism. Hexamethylenetetramine (HMT)-incorporated silver and nickel hydroxide carbonate electrocatalysts were prepared for efficient coproduction of CO and O2 with Faradaic efficiencies of 99.3 % and 100 %, respectively. Systematic experiments, operando attenuated total reflection surface-enhanced Fourier transform infrared spectroscopy characterizations and theoretical studies reveal that HMT promotes *CO2 hydrogenation/*CO desorption for accelerated CO2-to-CO conversion, and O2 inhibits reductive deactivation of the Pd(II) catalyst for enhanced oxidative aminocarbonylation, collectively leading to efficient synthesis of 10 organic amides with high yields of above 81 %. This work demonstrates the effectiveness of a tandem electrothermo-catalytic strategy for economically attractive CO2 conversion and amide synthesis, representing a new avenue to explore the full potential of CO2 utilization.
Conflict of interest
The authors declare no conflicts of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202314708-sup-0001-misc_information.pdf2.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1X. Jiang, X. Nie, X. Guo, C. Song, J. G. Chen, Chem. Rev. 2020, 120, 7984–8034.
- 2C.-T. Dinh, T. Burdyny, M. G. Kibria, A. Seifitokaldani, C. M. Gabardo, F. P. G. de Arquer, A. Kiani, J. P. Edwards, P. De Luna, O. S. Bushuyev, C. Zou, R. Quintero-Bermudez, Y. Pang, D. Sinton, E. H. Sargent, Science 2018, 360, 783–787.
- 3J. E. Huang, F. Li, A. Ozden, A. S. Rasouli, F. P. G. de Arquer, S. Liu, S. Zhang, M. Luo, X. Wang, Y. Lum, Y. Xu, K. Bertens, R. K. Miao, C.-T. Dinh, D. Sinton, E. H. Sargent, Science 2021, 372, 1074–1078.
- 4D.-H. Nam, P. De Luna, A. Rosas-Hernandez, A. Thevenon, F. Li, T. Agapie, J. C. Peters, O. Shekhah, M. Eddaoudi, E. H. Sargent, Nat. Mater. 2020, 19, 266–276.
- 5W. Xue, H. Liu, X. Chen, X. Yang, R. Yang, Y. Liu, M. Li, X. Yang, B. Y. Xia, B. You, Sci. China Chem. 2023, 66, 1834–1843.
- 6S. Ma, M. Sadakiyo, M. Heima, R. Luo, R. T. Haasch, J. I. Gold, M. Yamauchi, P. J. A. Kenis, J. Am. Chem. Soc. 2017, 139, 47–50.
- 7Y. Yuan, Y. Zhang, H. Li, M. Fei, H. Zhang, J. Santoro, D. Wang, Angew. Chem. Int. Ed. 2023, 62, e202305568.
- 8F. S. Roberts, K. P. Kuhl, A. Nilsson, Angew. Chem. Int. Ed. 2015, 54, 5179–5182.
- 9Y. Fang, J. C. Flake, J. Am. Chem. Soc. 2017, 139, 3399–3405.
- 10Y. Y. Birdja, E. Perez-Gallent, M. C. Figueiredo, A. J. Gottle, F. Calle-Vallejo, M. T. M. Koper, Nat. Energy 2019, 4, 732–745.
- 11X. Y. Zhang, W. J. Li, J. Chen, X. F. Wu, Y. W. Liu, F. Mao, H. Y. Yuan, M. Zhu, S. Dai, H. F. Wang, P. Hu, C. Sun, P. F. Liu, H. G. Yang, Angew. Chem. Int. Ed. 2022, 61. e202202298.
- 12H. Yang, Q. Lin, C. Zhang, X. Yu, Z. Cheng, G. Li, Q. Hu, X. Ren, Q. Zhang, J. Liu, C. He, Nat. Commun. 2020, 11, 593–600.
- 13Z. Zhang, G. Wen, D. Luo, B. Ren, Y. Zhu, R. Gao, H. Dou, G. Sun, M. Feng, Z. Bai, A. Yu, Z. Chen, J. Am. Chem. Soc. 2021, 143, 6855–6864.
- 14J. Qiao, Y. Liu, F. Hong, J. Zhang, Chem. Soc. Rev. 2014, 43, 631–675.
- 15K. Ye, Z. Zhou, J. Shao, L. Lin, D. Gao, N. Ta, R. Si, G. Wang, X. Bao, Angew. Chem. Int. Ed. 2020, 59, 4814–4821.
- 16K. D. Yang, C. W. Lee, K. Jin, S. W. Im, K. T. Nam, J. Phys. Chem. Lett. 2017, 8, 538–545.
- 17Y. Chen, J. Mandal, W. Li, A. Smith-Washington, C.-C. Tsai, W. Huang, S. Shrestha, N. Yu, R. P. S. Han, A. Cao, Y. Yang, Sci. Adv. 2020, 6: eaaz5413.
- 18Y. C. Li, Z. Wang, T. Yuan, D.-H. Nam, M. Luo, J. Wicks, B. Chen, J. Li, F. Li, F. P. G. de Arguer, Y. Wang, C.-T. Dinh, O. Voznyy, D. Sinton, E. H. Sargent, J. Am. Chem. Soc. 2019, 141, 8584–8591.
- 19
- 19aT. Zheng, M. Zhang, L. Wu, S. Guo, X. Liu, J. Zhao, W. Xue, J. Li, C. Liu, X. Li, Q. Jiang, J. Bao, J. Zeng, T. Yu, C. Xia, Nat. Catal. 2022, 5, 388–396;
- 19bM. G. Lee, X.-Y. Li, A. Ozden, J. Wicks, P. Ou, Y. Li, R. Dorakhan, J. Lee, H. K. Park, J. W. Yang, B. Chen, J. Abed, R. dos Reis, G. Lee, J. E. Huang, T. Peng, Y.-H. Chin, D. Sinton, E. H. H. Sargent, Nat. Catal. 2023, 6, 310–318.
- 20
- 20aB. You, Y. Sun, Acc. Chem. Res. 2018, 51, 1571–1580;
- 20bB. You, X. Liu, X. Liu, Y. Sun, ACS Catal. 2017, 7, 4564–4570;
- 20cB. You, X. Liu, N. Jiang, Y. Sun, J. Am. Chem. Soc. 2016, 138, 13639–13646;
- 20dX. Zhao, L. Du, B. You, Y. Sun, Catal. Sci. Technol. 2020, 10, 2711–2720;
- 20eB. You, N. Jiang, X. Liu, Y. Sun, Angew. Chem. Int. Ed. 2016, 55, 9913–9917.
- 21L. Wang, Y. Zhu, Y. Wen, S. Li, C. Cui, F. Ni, Y. Liu, H. Lin, Y. Li, H. Peng, B. Zhang, Angew. Chem. Int. Ed. 2021, 60, 10577–10582.
- 22
- 22aX. Wei, Y. Li, L. Chen, J. Shi, Angew. Chem. Int. Ed. 2021, 60, 3148–3155;
- 22bM. Li, T. Wang, W. Zhao, S. Wang, Y. Zou, Nano-Micro Lett. 2022, 14, 211.
- 23F. Ye, S. Zhang, Q. Cheng, Y. Long, D. Liu, R. Paul, Y. Fang, Y. Su, L. Qu, L. Dai, C. Hu, Nat. Commun. 2023, 14, 2040.
- 24V. R. Pattabiraman, J. W. Bode, Nature 2011, 480, 471–479.
- 25Y. Guo, R.-Y. Wang, J.-X. Kang, Y.-N. Ma, C.-Q. Xu, J. Li, X. Chen, Nat. Commun. 2021, 12, 5964.
- 26Y. A. Kolekar, B. M. Bhanage, J. Org. Chem. 2021, 86, 14028–14035.
- 27X. Wu, L. Hu, J. Org. Chem. 2007, 72, 765–774.
- 28D. J. C. Constable, P. J. Dunn, J. D. Hayler, G. R. Humphrey, J. L. Leazer Jr., R. J. Linderman, K. Lorenz, J. Manley, B. A. Pearlman, A. Wells, A. Zaks, T. Y. Zhang, Green Chem. 2007, 9, 411–420.
- 29E. Valeur, M. Bradley, Chem. Soc. Rev. 2009, 38, 606–631.
- 30A. Schoenberg, I. Bartoletti, R. F. Heck, J. Org. Chem. 1974, 39, 3318–3326.
- 31A. Schoenberg, R. F. Heck, J. Org. Chem. 1974, 39, 3327–3331.
- 32A. Schoenberg, R. F. Heck, J. Am. Chem. Soc. 1974, 96, 7761–7764.
- 33L. Ren, X. Li, N. Jiao, Org. Lett. 2016, 18, 5852–5855.
- 34M. Ma, Y. Liu, X. Ma, R. Ge, F. Qu, Z. Liu, G. Du, A. M. Asiri, Y. Yao, X. Sun, Sustain. Energy Fuels 2017, 1, 1287–1291.
- 35R. Ge, M. Ma, X. Ren, F. Qu, Z. Liu, G. Du, A. M. Asiri, L. Chen, B. Zheng, X. Sun, Chem. Commun. 2017, 53, 7812–7815.
- 36Y. Meng, X. Zhang, W.-H. Hung, J. He, Y.-S. Tsai, Y. Kuang, M. J. Kenney, J.-J. Shyue, Y. Liu, K. H. Stone, X. Zheng, S. L. Suib, M.-C. Lin, Y. Liang, H. Dai, Proc. Natl. Acad. Sci. USA 2019, 116, 23915–23922.
- 37S. Jeong, M.-H. Choi, G. S. Jagdale, Y. Zhong, N. P. Siepser, Y. Wang, X. Zhan, L. A. Baker, X. Ye, J. Am. Chem. Soc. 2022, 144, 12673–12680.
- 38Q. Chen, K. Liu, Y. Zhou, X. Wang, K. Wu, H. Li, E. Pensa, J. Fu, M. Miyauchi, E. Cortes, M. Liu, Nano Lett. 2022, 22, 6276–6284.
- 39D. Gao, H. Zhou, J. Wang, S. Miao, F. Yang, G. Wang, J. Wang, X. Bao, J. Am. Chem. Soc. 2015, 137, 4288–4291.
- 40R. Xia, S. Zhang, X. Ma, F. Jiao, J. Mater. Chem. A 2020, 8, 15884–15890.
- 41J. Rosen, G. S. Hutchings, Q. Lu, S. Rivera, Y. Zhou, D. G. Vlachos, F. Jiao, ACS Catal. 2015, 5, 4293–4299.
- 42S. Liu, C. Sun, J. Xiao, J.-L. Luo, ACS Catal. 2020, 10, 3158–3163.
- 43S. Liu, X.-Z. Wang, H. Tao, T. Li, Q. Liu, Z. Xu, X.-Z. Fu, J.-L. Luo, Nano Energy 2018, 45, 456–462.
- 44M. Han, N. Wang, B. Zhang, Y. Xia, J. Li, J. Han, K. Yao, C. Gao, C. He, Y. Liu, Z. Wang, A. Seifitokaldani, X. Sun, H. Liang, ACS Catal. 2020, 10, 9725–9734.
- 45J. Du, Z. Chen, S. Ye, B. J. Wiley, T. J. Meyer, Angew. Chem. Int. Ed. 2015, 54, 2073–2078.
- 46N. Wang, Z. Cao, X. Zheng, B. Zhang, S. M. Kozlov, P. Chen, C. Zou, X. Kong, Y. Wen, M. Liu, Y. Zhou, C. T. Dinh, L. Zheng, H. Peng, Y. Zhao, L. Cavallo, X. Zhang, E. H. Sargent, Adv. Mater. 2020, 32, 201906806.
- 47M. Xie, L. Yang, Y. Ji, Z. Wang, X. Ren, Z. Liu, A. M. Asiri, X. Xiong, X. Sun, Nanoscale 2017, 9, 16612–16615.
- 48
- 48aX. Zheng, B. Zhang, P. D. Luna, Y. Liang, R. Comin, O. Voznyy, L. Han, F. P. G. de Arquer, M. Liu, C. T. Dinh, T. Regier, J. J. Dynes, S. He, H. L. Xin, H. Peng, D. Prendergast, X. Du, E. H. Sargent, Nat. Chem. 2018, 10, 149–154;
- 48bW. Zhang, H. Song, Y. Cheng, C. Liu, C. Wang, M. A. N. Khan, H. Zhang, J. Liu, C. Yu, L. Wang, J. Li, Adv. Sci. 2019, 6, 1801901;
- 48cD. Guo, Z. Zeng, Z. Wan, Y. Li, B. Xi, C. Wang, Adv. Funct. Mater. 2021, 31, 2101324.
- 49T. Čarný, R. Rocaboy, A. Clemenceau, O. Baudoin, Angew. Chem. Int. Ed. 2020, 59, 18980–1898.
- 50Q. Feng, W. Wang, W.-C. Cheong, D. Wang, Q. Peng, J. Li, C. Chen, Y. Li, Sci. China Mater. 2015, 58, 936–943.