Aldol Condensation for the Construction of Organic Functional Materials
Xiuyuan Zhu
State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorJiayao Duan
State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorJunxin Chen
State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorRiping Liu
State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorZe Qin
Dongguan Key Laboratory of Interdisciplinary Science for Advanced Materials and Large-Scale Scientific Facilities, School of Physical Sciences, Great Bay University, Dongguan, 523000 P. R. China
Great Bay Institute for Advanced Study, Dongguan, 523000 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Hu Chen
Dongguan Key Laboratory of Interdisciplinary Science for Advanced Materials and Large-Scale Scientific Facilities, School of Physical Sciences, Great Bay University, Dongguan, 523000 P. R. China
Great Bay Institute for Advanced Study, Dongguan, 523000 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Wan Yue
State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorXiuyuan Zhu
State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorJiayao Duan
State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorJunxin Chen
State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorRiping Liu
State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorZe Qin
Dongguan Key Laboratory of Interdisciplinary Science for Advanced Materials and Large-Scale Scientific Facilities, School of Physical Sciences, Great Bay University, Dongguan, 523000 P. R. China
Great Bay Institute for Advanced Study, Dongguan, 523000 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Hu Chen
Dongguan Key Laboratory of Interdisciplinary Science for Advanced Materials and Large-Scale Scientific Facilities, School of Physical Sciences, Great Bay University, Dongguan, 523000 P. R. China
Great Bay Institute for Advanced Study, Dongguan, 523000 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Wan Yue
State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275 P. R. China
Search for more papers by this authorGraphical Abstract
Aldol-condensation-derived organic functional materials have exerted a profound influence on n-type organic field-effect transistors (OFETs), organic electrochemical transistors (OECTs), organic photovoltaics (OPVs), organic thermoelectrics (OTEs), and NIR-II photothermal conversion. This all-encompassing Review highlights the recent decade's developments, charting the course for progress in this growing and multidisciplinary domain.
Abstract
Aldol condensation is a cost-effective and sustainable synthetic method, offering the advantages of low complexity, substrate universality, and high efficiency. Over the past decade, it has become popular for creating next-generation organic functional materials, particularly rigid-rod conjugated (semi)conductors. This review focuses on conjugated small molecules, oligomers, and polymeric (semi)conductors synthesized through aldol condensation, with emphasis on their remarkable features in advancing n-type organic field-effect transistors (OFETs), organic electrochemical transistors (OECTs), organic photovoltaics (OPVs), and organic thermoelectrics (OTEs) as well as NIR-II photothermal conversion. Coherence character, optical properties, microstructure, and chain conformation are investigated to understand material-property relationships. Future applications and challenges in this area are also discussed.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1
- 1aH. Sirringhaus, Adv. Mater. 2014, 26, 1319–1335;
- 1bY. Wang, Y. Yu, H. Liao, Y. Zhou, I. McCulloch, W. Yue, Acc. Chem. Res. 2020, 53, 2855–2868;
- 1cQ. Zhang, W. Hu, H. Sirringhaus, K. Müllen, Adv. Mater. 2022, 34, 2108701;
- 1dZ.-G. Zhang, Y. Li, Angew. Chem. Int. Ed. 2021, 60, 4422–4433;
- 1eB. Russ, A. Glaudell, J. J. Urban, M. L. Chabinyc, R. A. Segalman, Nat. Rev. Mater. 2016, 1, 16050;
- 1fM. Xiao, X. Ren, K. Ji, S. Chung, X. Shi, J. Han, Z. Yao, X. Tao, S. J. Zelewski, M. Nikolka, Y. Zhang, Z. Zhang, Z. Wang, N. Jay, I. Jacobs, W. Wu, H. Yu, Y. A. Samad, S. D. Stranks, B. Kang, K. Cho, J. Xie, H. Yan, S. Chen, H. Sirringhaus, Sci. Adv. 2023, 9, eadg8659.
- 2H. Bronstein, C. B. Nielsen, B. C. Schroeder, I. McCulloch, Nat. Chem. Rev. 2020, 4, 66–77.
- 3
- 3aJ. Chen, J. Yang, Y. Guo, Y. Liu, Adv. Mater. 2022, 34, 2104325;
- 3bW. Yue, A. Lv, J. Gao, W. Jiang, L. Hao, C. Li, Y. Li, L. E. Polander, S. Barlow, W. Hu, S. Di Motta, F. Negri, S. R. Marder, Z. Wang, J. Am. Chem. Soc. 2012, 134, 5770–5773;
- 3cS. Allard, M. Forster, B. Souharce, H. Thiem, U. Scherf, Angew. Chem. Int. Ed. 2008, 47, 4070–4098.
- 4
- 4aG. L. Beutner, S. E. Denmark, Angew. Chem. Int. Ed. 2013, 52, 9086–9096;
- 4bW. Gati, H. Yamamoto, Acc. Chem. Res. 2016, 49, 1757–1768.
- 5C. L. Perrin, K. L. Chang, J. Org. Chem. 2016, 81, 5631–5635.
- 6X. Wei, W. Zhang, G. Yu, Adv. Funct. Mater. 2021, 31. 2010979.
- 7
- 7aZ. F. Yao, H. Y. Liu, Z. Y. Wang, Z. K. Zhou, J. Y. Wang, J. Pei, Chem. Asian J. 2019, 14, 1686–1691;
- 7bJ. H. Dou, Y. Q. Zheng, Z. F. Yao, Z. A. Yu, T. Lei, X. Shen, X. Y. Luo, J. Sun, S. D. Zhang, Y. F. Ding, G. Han, Y. Yi, J. Y. Wang, J. Pei, J. Am. Chem. Soc. 2015, 137, 15947–15956;
- 7cY. Jiang, X. Zheng, Y. Deng, H. Tian, J. Ding, Z. Xie, Y. Geng, F. Wang, Angew. Chem. Int. Ed. 2018, 57, 10283–10287;
- 7dS. Sato, P.-S. Lin, W.-N. Wu, C.-L. Liu, T. Higashihara, Catalysts 2020, 10, 364.
- 8A. Onwubiko, W. Yue, C. Jellett, M. Xiao, H. Y. Chen, M. K. Ravva, D. A. Hanifi, A. C. Knall, B. Purushothaman, M. Nikolka, J. C. Flores, A. Salleo, J. L. Bredas, H. Sirringhaus, P. Hayoz, I. McCulloch, Nat. Commun. 2018, 9, 416.
- 9C. Wang, H. Dong, W. Hu, Y. Liu, D. Zhu, Chem. Rev. 2012, 112, 2208–2267.
- 10
- 10aH. Dong, X. Fu, J. Liu, Z. Wang, W. Hu, Adv. Mater. 2013, 25, 6158–6183;
- 10bQ. Dang, L. Hu, J. Wang, Q. Zhang, M. Han, S. Luo, Y. Gong, C. Wang, Q. Li, Z. Li, Chem. Eur. J. 2019, 25, 7031;
- 10cQ. Wang, Y. Qin, M. Li, L. Ye, Y. Geng, Adv. Energy Mater. 2020, 10, 2002572;
- 10dR. Ma, J. Yu, T. Liu, G. Zhang, Y. Xiao, Z. Luo, G. Chai, Y. Chen, Q. Fan, W. Su, G. Li, E. Wang, X. Lu, F. Gao, H. Yan, B. Tang, H. Yan, Aggregate 2022, 3, e58.
- 11K. Feng, H. Guo, H. Sun, X. Guo, Acc. Chem. Res. 2021, 54, 3804–3817.
- 12J. Chen, W. Zhang, L. Wang, G. Yu, Adv. Mater. 2023, 35, 2210772.
- 13G. Zhang, Y. Dai, Y. Liu, J. Liu, H. Lu, L. Qiu, K. Cho, Polym. Chem. 2017, 8, 3448–3456.
- 14
- 14aJ. H. Dou, Y. Q. Zheng, Z. F. Yao, T. Lei, X. Shen, X. Y. Luo, Z. A. Yu, S. D. Zhang, G. Han, Z. Wang, Y. Yi, J. Y. Wang, J. Pei, Adv. Mater. 2015, 27, 8051–8055;
- 14bJ. H. Dou, Z. A. Yu, J. Zhang, Y. Q. Zheng, Z. F. Yao, Z. Tu, X. Wang, S. Huang, C. Liu, J. Sun, Y. Yi, X. Cao, Y. Gao, J. Y. Wang, J. Pei, J. Am. Chem. Soc. 2019, 141, 6561–6568.
- 15A. Ganguly, B. King, B. H. Lessard, J. L. Brusso, Synth. Met. 2022, 287, 117090.
- 16L. G. Mercier, M. Leclerc, Acc. Chem. Res. 2013, 46, 1597–1605.
- 17T. Lei, J. H. Dou, X. Y. Cao, J. Y. Wang, J. Pei, J. Am. Chem. Soc. 2013, 135, 12168–12171.
- 18Q. Che, W. Zhang, X. Wei, Y. Zhou, H. Luo, J. Wei, L. Wang, G. Yu, CCS Chem. 2023, https://doi.org/10.31635/ccschem.023.202202458.
- 19A. Ganguly, K. He, A. D. Hendsbee, M. Abdelsamie, R. N. Bennett, Y. Li, M. F. Toney, T. L. Kelly, ACS Appl. Mater. Interfaces 2020, 12, 14265–14271.
- 20Y. Guo, X. Yang, L. Wang, J. Duan, Y. Zhou, C. B. Nielsen, Y. Yu, J. Yang, Y. Guo, Z. Li, W. Yue, Y. Liu, I. McCulloch, Macromolecules 2021, 54, 10312–10320.
- 21Y.-W. Huang, Y.-C. Lin, J.-S. Li, W.-C. Chen, C.-C. Chueh, J. Mater. Chem. C 2021, 9, 9473–9483.
- 22D. Wang, Y. Hou, K. Yang, Y. Wang, Q. Liao, S. Y. Jeong, J. Li, H. Y. Woo, X. Deng, X. Guo, Dyes Pigm. 2023, 212, 111138.
- 23M. Xiao, R. L. Carey, H. Chen, X. Jiao, V. Lemaur, S. Schott, M. Nikolka, C. Jellett, A. Sadhanala, S. Rogers, S. P. Senanayak, A. Onwubiko, S. Han, Z. Zhang, M. Abdi-Jalebi, Y. Zhang, T. H. Thomas, N. Mahmoudi, L. Lai, E. Selezneva, X. Ren, M. Nguyen, Q. Wang, I. Jacobs, W. Yue, C. R. McNeill, G. Liu, D. Beljonne, I. McCulloch, H. Sirringhaus, Sci. Adv. 2021, 7, eabe5280.
- 24
- 24aB. D. Paulsen, K. Tybrandt, E. Stavrinidou, J. Rivnay, Nat. Mater. 2020, 19, 13–26;
- 24bY. Niu, Z. Qin, Y. Zhang, C. Chen, S. Liu, H. Chen, Mater. Futures 2023, 2, 042401.
- 25E. Zeglio, O. Inganas, Adv. Mater. 2018, 30, 1800941.
- 26A. Sanzone, A. Calascibetta, M. Monti, S. Mattiello, M. Sassi, F. Corsini, G. Griffini, M. Sommer, L. Beverina, ACS Macro Lett. 2020, 9, 1167.
- 27
- 27aC. B. Nielsen, A. Giovannitti, D. T. Sbircea, E. Bandiello, M. R. Niazi, D. A. Hanifi, M. Sessolo, A. Amassian, G. G. Malliaras, J. Rivnay, I. McCulloch, J. Am. Chem. Soc. 2016, 138, 10252–10259;
- 27bH. Liao, J. Chen, L. Lan, Y. Yu, G. Zhu, J. Duan, X. Zhu, H. Dai, M. Xiao, Z. Li, W. Yue, I. McCulloch, ACS Appl. Mater. Interfaces 2022, 14, 16477–16486.
- 28X. Chen, A. Marks, B. D. Paulsen, R. Wu, R. B. Rashid, H. Chen, M. Alsufyani, J. Rivnay, I. McCulloch, Angew. Chem. Int. Ed. 2021, 60, 9368–9373.
- 29A. Marks, X. Chen, R. Wu, R. B. Rashid, W. Jin, B. D. Paulsen, M. Moser, X. Ji, S. Griggs, D. Meli, X. Wu, H. Bristow, J. Strzalka, N. Gasparini, G. Costantini, S. Fabiano, J. Rivnay, I. McCulloch, J. Am. Chem. Soc. 2022, 144, 4642–4656.
- 30Y. Wang, E. Zeglio, L. Wang, S. Cong, G. Zhu, H. Liao, J. Duan, Y. Zhou, Z. Li, D. Mawad, A. Herland, W. Yue, I. McCulloch, Adv. Funct. Mater. 2022, 32, 2111439.
- 31J. Chen, W. Huang, D. Zheng, Z. Xie, X. Zhuang, D. Zhao, Y. Chen, N. Su, H. Chen, R. M. Pankow, Z. Gao, J. Yu, X. Guo, Y. Cheng, J. Strzalka, X. Yu, T. J. Marks, A. Facchetti, Nat. Mater. 2022, 21, 564–571.
- 32Y. Yu, G. Zhu, L. Lan, J. Chen, X. Zhu, J. Duan, S. Cong, Z. Li, Y. Wang, Z. Wang, I. McCulloch, W. Yue, Adv. Funct. Mater. 2023, 33, 2300012.
- 33J. Duan, G. Zhu, L. Wang, J. Chen, S. Cong, X. Zhu, Y. Zhou, Z. Li, I. McCulloch, W. Yue, Adv. Funct. Mater. 2022, 32, 2203937.
- 34J. Duan, G. Zhu, L. Lan, J. Chen, X. Zhu, C. Chen, Y. Yu, H. Liao, Z. Li, I. McCulloch, W. Yue, Angew. Chem. Int. Ed. 2023, 62, e202213737.
- 35J. Duan, G. Zhu, J. Chen, C. Zhang, X. Zhu, H. Liao, Z. Li, H. Hu, I. McCulloch, C. B. Nielsen, W. Yue, Adv. Mater. 2023, 35, 2300252.
- 36
- 36aZ. G. Zhang, Y. Li, Angew. Chem. Int. Ed. 2021, 60, 4422–4433;
- 36bK. Yang, Z. Chen, Y. Wang, X. Guo, Acc. Mater. Res. 2023, 4, 237–250.
- 37
- 37aH. Tang, Y. Dou, R. Tan, Z. Chen, C. Liu, K. Zhang, J. Zhang, F. Huang, Y. Cao, Polym. J. 2023, 55, 517–527;
- 37bL. Tian, J. Jing, H. Tang, Y. Liang, Z. Hu, M. Rafiq, F. Huang, Y. Cao, Solar RRL 2021, 5, 2000523.
- 38H. Wang, C. Yu, Joule 2019, 3, 53–80.
- 39Y. Lu, Z. D. Yu, R. Z. Zhang, Z. F. Yao, H. Y. You, L. Jiang, H. I. Un, B. W. Dong, M. Xiong, J. Y. Wang, J. Pei, Angew. Chem. Int. Ed. 2019, 58, 11390–11394.
- 40M. Alsufyani, R. K. Hallani, S. Wang, M. Xiao, X. Ji, B. D. Paulsen, K. Xu, H. Bristow, H. Chen, X. Chen, H. Sirringhaus, J. Rivnay, S. Fabiano, I. McCulloch, J. Mater. Chem. C 2020, 8, 15150–15157.
- 41M. Alsufyani, M. A. Stoeckel, X. Chen, K. Thorley, R. K. Hallani, Y. Puttisong, X. Ji, D. Meli, B. D. Paulsen, J. Strzalka, K. Regeta, C. Combe, H. Chen, J. Tian, J. Rivnay, S. Fabiano, I. McCulloch, Angew. Chem. Int. Ed. 2022, 61, e202113078.
- 42H. Chen, M. Moser, S. Wang, C. Jellett, K. Thorley, G. T. Harrison, X. Jiao, M. Xiao, B. Purushothaman, M. Alsufyani, H. Bristow, S. De Wolf, N. Gasparini, A. Wadsworth, C. R. McNeill, H. Sirringhaus, S. Fabiano, I. McCulloch, J. Am. Chem. Soc. 2021, 143, 260–268.
- 43J. Wu, L. You, L. Lan, H. J. Lee, S. T. Chaudhry, R. Li, J. Cheng, Adv. Mater. 2017, 29, 1703403.
- 44
- 44aQ. Dang, Y. Jiang, J. Wang, Q. Zhang, M. Zhang, S. Luo, Y. Xie, K. Pu, Q. Li, Z. Li, Adv. Mater. 2020, 32, 2006752;
- 44bK. Wen, H. Tan, Q. Peng, H. Chen, H. Ma, L. Wang, A. Peng, Q. Shi, X. Cai, H. Huang, Adv. Mater. 2022, 34, 2108146.
- 45
- 45aR. N. Jones, Chem. Rev. 1947, 41, 353–371;
- 45bH. Ebata, T. Izawa, E. Miyazaki, K. Takimiya, M. Ikeda, H. Kuwabara, T. Yui, J. Am. Chem. Soc. 2007, 129, 15732–15733.
- 46N. J. Hestand, H. Yamagata, B. Xu, D. Sun, Y. Zhong, A. R. Harutyunyan, G. Chen, H.-L. Dai, Y. Rao, F. C. Spano, J. Phys. Chem. C 2015, 119, 22137–22147.
- 47S. Holliday, R. S. Ashraf, A. Wadsworth, D. Baran, S. A. Yousaf, C. B. Nielsen, C.-H. Tan, S. D. Dimitrov, Z. Shang, N. Gasparini, M. Alamoudi, F. Laquai, C. J. Brabec, A. Salleo, J. R. Durrant, I. McCulloch, Nat. Commun. 2016, 7, 11585.
- 48I. McCulloch, M. Heeney, C. Bailey, K. Genevicius, I. MacDonald, M. Shkunov, D. Sparrowe, S. Tierney, R. Wagner, W. Zhang, M. L. Chabinyc, R. J. Kline, M. D. McGehee, M. F. Toney, Nat. Mater. 2006, 5, 328–333.
- 49
- 49aW. Zhang, J. Smith, S. E. Watkins, R. Gysel, M. McGehee, A. Salleo, J. Kirkpatrick, S. Ashraf, T. Anthopoulos, M. Heeney, I. McCulloch, J. Am. Chem. Soc. 2010, 132, 11437–11439;
- 49bH. Chen, M. Hurhangee, M. Nikolka, W. Zhang, M. Kirkus, M. Neophytou, S. J. Cryer, D. Harkin, P. Hayoz, M. Abdi-Jalebi, C. R. McNeill, H. Sirringhaus, I. McCulloch, Adv. Mater. 2017, 29, 1702523;
- 49cM. Li, A. H. Balawi, P. J. Leenaers, L. Ning, G. H. L. Heintges, T. Marszalek, W. Pisula, M. M. Wienk, S. C. J. Meskers, Y. Yi, F. Laquai, R. A. J. Janssen, Nat. Commun. 2019, 10, 2867;
- 49dZ.-Y. Wang, L. Di Virgilio, Z.-F. Yao, Z.-D. Yu, X.-Y. Wang, Y.-Y. Zhou, Q.-Y. Li, Y. Lu, L. Zou, H. I. Wang, X.-Y. Wang, J.-Y. Wang, J. Pei, Angew. Chem. Int. Ed. 2021, 60, 20483–20488.
- 50Y. Jiang, Y. Zhang, Y. Deng, S. Dong, B. Li, Y. Yi, Z. Zeng, H. Chen, H. Luo, Y. Geng, CCS Chem. 2022, 4, 3497–3504.
- 51Y. He, H. Liao, S. Lyu, X. Q. Xu, Z. Li, I. McCulloch, W. Yue, Y. Wang, Chem. Sci. 2021, 12, 5177–5184.
- 52Z. F. Yao, Y. Q. Zheng, J. H. Dou, Y. Lu, Y. F. Ding, L. Ding, J. Y. Wang, J. Pei, Adv. Mater. 2021, 33, 2006794.
- 53M. Xiao, B. Kang, S. B. Lee, L. M. A. Perdigão, A. Luci, D. A. Warr, S. P. Senanayak, M. Nikolka, M. Statz, Y. Wu, A. Sadhanala, S. Schot, R. Carey, Q. Wang, M. Lee, C. Kim, A. Onwubiko, C. Jellett, H. Liao, W. Yue, K. Cho, G. Costantini, I. McCulloch, H. Sirringhaus, Adv. Mater. 2020, 32, 2000063.